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Summary

Three new receiver designs, incorporating novel digital and optical signal process-

ing solutions, are presented for fiber-optic communication in long-haul transmissions

and access networks. Firstly, a complex-weighted decision-aided maximum-likelihood

joint phase noise and frequency offset estimator is derived for coherent receivers in

long-haul transmissions. It achieves fast carrier acquisition, complete frequency esti-

mation range, low cycle slip probability, low signal-to-noise ratio (SNR) operability,

requires no phase unwrapping, reliably tracks time-varying frequency, and is format

transparent. Additionally, the resilience of several 4-, 8-, and 16-point constellations

to phase rotation and cycle slips are investigated. Secondly, the need for carrier estima-

tors with adaptive filter lengths in coherent receivers is studied. An adaptive complex-

weighted decision-aided carrier estimator is introduced, whose effective filter length

automatically adapts according to the SNR, laser-linewidth-per-symbol-rate, nonlinear

phase noise, and modulation format, with no preset parameters required. Besides bit-

error rate, choice of filter length also affects the cycle slip probability. Thirdly, a direct-

detection receiver incorporating a passive optical delay interferometer is proposed for

radio-over-fiber optical backhaul employing reflective semiconductor optical amplifier

(RSOA) in broadband wireless access networks. Effectiveness of the receiver in allevi-

ating the constrained modulation bandwidth, limited transmission distance, and radio

frequency signal fading, is assessed through an upstream transmission of a 2-Gb/s 6-

GHz radio signal in loopback-configured network using a directly modulated RSOA.
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Chapter 1

Introduction

Invention of laser by T. H. Maiman (Hughes Research Laboratories, USA) in 1960

[1] and proposition of optical fiber as the transmission medium of choice by K. C.

Kao (Standard Telecommunication Laboratories, UK) in 1966 [2] started the optical

communications era. Applications of optical communication in long haul transmission

and access networks are considered in this thesis. The challenges in signal reception

are studied, and addressed using novel digital and optical signal processing techniques

in the receiver.

1.1 Long Haul Transmission

Long haul optical communication systems aim for bit rates per channel in excess of

100 Gb/s as the next interface rates are geared toward 400 Gb/s and 1 Tb/s [3, 4].

Increasing the transmission capacity, to service the growth of data traffic, at a fixed

optical amplification bandwidth requires increasing the spectral efficiency. Most long-

haul transmission systems are limited by inline optical amplifier noise, which is ad-

ditive white Gaussian noise (AWGN) in nature [5]. The ultimate spectral efficiency

for a bandwidth and power constrained AWGN channel given by Shannon’s capacity

1



1.1 Long Haul Transmission

is [6, 7]

SE =
Bs

Bc

log2(1 + γs) bits/s/Hz (1.1)

whereBs/Bc is the ratio of signal bandwidth to channel bandwidth and γs is the signal-

to-noise ratio (SNR) per symbol.

Binary modulation which encodes one bit per symbol, such as on-off keying

(OOK) with direct detection or binary differential phase-shift keying (DPSK) with

interferometric detection, only achieves a spectral efficiency of 0.8 bits/s/Hz per po-

larization [8]. Noncoherent detection with OOK and binary DPSK are attractive only

at spectral efficiencies below 1 bit/s/Hz per polarization [9].

Moving to nonbinary modulations, we have optically amplified unconstrained

intensity-modulated direct-detection (IMDD) systems with an asymptotic spectral effi-

ciency of 0.5 log2(γs)−0.5 [5,10,11]. However, the asymptotic spectral efficiency for a

constant-intensity constrained modulation, such as M -ary phase-shift keying (MPSK),

with coherent detection can reach [12–14]

SE ∼ 0.5 log2(γs) + 1.10 bits/s/Hz. (1.2)

Although both IMDD and constant-intensity modulation has only one degree of free-

dom (DOF) per polarization for encoding, the coherent system outperforms the non-

coherent IMDD in an optical amplifier noise limited system by a spectral efficiency of

1.6 bits/s/Hz at large SNR [5]. Achievable spectral efficiencies of both IMDD and

constant intensity modulation are approximately halved compared to Eq. (1.1) due to

discarding of one DOF, namely, the phase and field intensity, respectively.

Further increase in spectral efficiency requires higher level modulation with co-

herent detection which allows information to be encoded in all four available DOF,

namely, two optical field quadratures and two polarizations. Quaternary phase-shift

keying (QPSK) has been suggested as the most attractive modulation for spectral effi-

2



1.1 Long Haul Transmission

ciency between 1 and 2 bits/s/Hz, whereas 8 phase-shift keying (PSK) and 16 quadra-

ture amplitude modulation (QAM) are necessary for spectral efficiencies beyond 2

bits/s/Hz per polarization [9]. Coherent detection promises superior spectral effi-

ciency, receiver sensitivity, and transmission distance compared to noncoherent sys-

tems [15], and enables the attainment of Shannon’s capacity with the use of coding

such as Turbo codes [16–18].

A major impediment in homodyne coherent detection is the synchronization of

the local oscillator (LO) laser to the optical carrier of the received optical signal. The

received signal can be perturbed by phase noise arising from nonzero laser linewidth

∆ν and frequency offset ∆f between the transmitter and LO lasers. Laser linewidth

can range from the order of 10 kHz for external-cavity tunable lasers [19] and fiber

lasers [20] to 10 MHz for distributed feedback (DFB) lasers [21]. Typical tunable

lasers can have a frequency error of up to ±2.5 GHz over their lifetime, leading to a

possible frequency offset ∆f as large as 5 GHz [22].

Traditionally, phase-locked loop (PLL) was employed for coherent demodula-

tion of optical signals [23–25]. However, PLL is sensitive to loop propagation delay

which can cause loop instability [21]. Loop delay greater than the bit duration Tb be-

comes nonnegligible and severely constraints the permissible laser linewidth-per-bit-

rate ∆νTb [26]. Moreover, PLL has a limited frequency-offset-per-symbol-rate ∆fT

estimation range [27]. The tolerable ∆fT by PLL in 16-QAM signals was limited to

1.43× 10−3 at ∆νTb = 3.57× 10−6 [28], to 2.5× 10−3 at ∆νTb = 2.5× 10−6 [29] in

experiments, and to 10−2 in simulation at ∆νTb = 1.79× 10−5 [30] for reliable carrier

estimation. Optimization of PLL design parameters (e.g., loop bandwidth, damping

factor) between the competing demands of good BER performance and acquisition

time or estimation range is complex, and needs to be evaluated numerically [8]. PLLs

are unsuitable in reconfigurable optical systems as their loop parameters cannot be

optimized adaptively.

3



1.2 Access Networks

Current interest lies in intradyne coherent detection using a free running LO laser,

followed by sampling with high-speed analog-to-digital converter (ADC), and execu-

tion of carrier estimation in digital signal processing (DSP) modules [31]. Even when

PLLs may fail due to delay constraints, DSP based carrier estimation methods can per-

mit the use of lasers with broader linewidths such as the cost-effective DFB lasers by

relaxing the laser linewidth and frequency offset requirements.

1.2 Access Networks

Sustained growth in demand for broadband multimedia services by end users in indoor

and outdoor environments has fueled research in the last-mile access technology. Next

generation access networks are expected to provide large data bandwidth, multiple

broadband applications, high quality of service, mobility support, and ubiquitous cov-

erage [32]. Broadband wireless access network, using a hybrid architecture comprising

an untethered wireless access front-end and a high-capacity low-loss optical backhaul

to transport radio over fiber (RoF), is regarded as a promising solution [33]. Here,

distributed remote base stations (RBSs) serve as wireless gateways catering broadband

connectivity to end users and are connected to a central office (CO) via an optical fiber

network [34]. This distribution system can provide a wide service coverage area cater-

ing to a large number of fixed and mobile users, while providing a quick and cheap

installation of RBSs. The RBSs can be implemented simply by using a laser diode,

an optical modulator, an optical receiver, electrical amplifiers, and antennas. Since the

received radio signal at each RBS is directly imposed onto the laser for transmission

without any frequency translation or signal processing [34], RoF provides a transparent

and homogeneous infrastructure for multiple services which can be upgraded grace-

fully. RoF systems allow network operators to concentrate the system intelligence and

share equipments at the CO while using RBSs with low complexity.
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1.2 Access Networks

RoF systems available today generally use IMDD links for reasons of cost and

simplicity [35]. Additionally, direct detection links are inherently insensitive to phase

noise [32]. In order to improve the reliability of the RoF system, to centralize channel

wavelength management, and to reduce the maintenance cost of failure-prone laser

diodes at the RBSs, it is highly desirable for service providers to move the light sources

to the CO. Furthermore, stringent requirements on frequency stability make placing

lasers at RBS expensive. Centralized light source calls for a loopback configuration.
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modulated light

HR AR

Injection 

current
dc bias

RF signal
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Intensity 

modulator
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Figure 1.1: Principle of upstream transmission in an IMDD WDM RoF system.
LSB: lower-frequency sideband, USB: upper-frequency sideband.

The principle of upstream transmission in an IMDD RoF system with multiple

subscribers for a loopback access network is illustrated in Fig. 1.1 and can be explained

as follows. A wavelength-division multiplexed (WDM) continuous-wave (CW) laser

seed light from the CO traverses the transmission fiber, is demultiplexed by arrayed

waveguide grating (AWG), and is fed to the intensity modulator at each RBS for up-

stream modulation. The optical field of each CW laser seed light can be modeled

as EL(t) = exp(j2πfLt), where fL is the laser diode frequency. The wireless radio
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1.2 Access Networks

frequency (RF) signal received at the RBS can be modeled as

ERF (t) = A(t) cos(φ(t) + 2πf0t), (1.3)

where f0 is the RF carrier frequency, and A(t) and φ(t) are the amplitude and phase,

respectively, of the transmitted symbol. The RF signal is level shifted with a dc bias

of Adc, applied through a bias-T, to avoid negative modulating values. The biased RF

signal is modulated onto the envelope of the CW laser using an intensity modulator,

generating an optical field of

ERoF,IM(t) = [Adc + A(t) cos(φ(t) + 2πf0t)] exp(j2πfLt) (1.4)

comprising an optical carrier and two sidebands (i.e., double-sideband (DSB) modula-

tion). These modulated ERoF,IM(t) signals are then multiplexed in the AWG and sent

back to the CO for detection. The transmitted RF signal in each channel is recovered

at the CO by a square-law photodetection, followed by a dc block to remove dc com-

ponents. Since the wavelength of the seed light determines that of the upstream signal,

centralized wavelength management of the channels is made possible.
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Figure 1.2: Schematic diagram of an RSOA.

The key element in a loopback network is the optical modulator at the RBS, for

which a reflective semiconductor optical amplifier (RSOA) has been favorably iden-

tified [36]. Fig. 1.2 depicts a schematic diagram of a single-port RSOA. The device

comprise an amplifying waveguide with an anti-reflector (AR) at the front end acting

as the input/output port and a high reflector (HR) at the rear end [37]. The injected

current directly modulates the gain of the RSOA and thus the intensity of the incident
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1.2 Access Networks

light. In short, light injected into a directly-modulated RSOA is amplified, intensity

modulated, and reflected back out through the same port.

RSOAs are desirable for their (i) low cost and compact size, (ii) natural com-

bination of modulation and amplification, (iii) color-free operation (with very wide

optical bandwidth of more than 60 nm), and (iv) low noise figure [38]. RSOA being

a single-port device, unlike the two-port LiNbO3 Mach-Zehnder modulators (MZMs)

and electroabsorption modulators, minimizes the active fiber alignments required and

has a less expensive packaging cost [36]. Inbuilt amplification gain helps overcome any

coupling loses, thus relaxing fiber alignment tolerance in RSOAs. Colorless RSOAs

allow wavelength-independent operation of the RBS, which enables dynamic wave-

length allocation to RBSs, alleviates the inventory problem, and minimizes the de-

ployment costs.

RSOA placed at the RBS and seeded by an optical carrier from the CO have

been successfully exploited to yield reliable RBSs [39–42]. However, all previously

reported RoF systems using RSOAs only accommodate RF carriers of ≤ 1 GHz, with

a maximum encoded data rate of 54 Mb/s over 20-km fiber [39, 40]. This is because

the modulation bandwidth of RSOAs is limited by the carrier life-time in the active

layer to less than 3.5 GHz [39]. It is, therefore, challenging to accommodate higher

RF carriers and data rate with the severely bandwidth-limited RSOA. Furthermore, the

chirp of RSOA will hamper the transmission reach of the system [43].

A key issue in DSB optical signals is the power penalty due to chromatic dis-

persion (CD)-induced phase shift of the two sidebands relative to the optical carrier,

which limits the transmission distance and supportable RF frequencies [44, 45]. An-

other drawback to be considered is the SNR degradation of the received signal in net-

works using centralized light sources due to crosstalk from Rayleigh backscattered

light [46].
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1.3 Research Contributions

1.3 Research Contributions

This thesis contributes three new receiver designs for optical communications. They

are namely, two new DSP based carrier estimators in coherent receivers for long-haul

transmissions and one new optical signal processing based direct detection receiver in

IMDD RoF systems for wireless broadband access networks. The new receiver designs

and their improvement over prior art are as follows.

A novel complex-weighted decision-aided maximum-likelihood (CW-DA-ML)

carrier estimator for joint phase and frequency estimation is derived in Chapter 3. CW-

DA-ML is a decision-aided least-squares based estimator, which achieves fast carrier

acquisition, complete frequency estimation range, low SNR operability, requires no

phase unwrapping, reliably tracks time-varying frequency, and is format transparent.

Additionally, a pilot-assisted (PA) CW-DA-ML is demonstrated with low pilot over-

head. Moreover, the most desirable 4-, 8-, and 16-point constellations from the carrier

recovery perspective are identified to be QPSK, 8-QAM, and 16-QAM, respectively.

A novel low-complexity adaptive complex-weighted decision-aided (CW-DA) car-

rier estimator with a two-tap structure is derived in Chapter 4. Unlike classical estima-

tors with fixed-length filters, the effective filter length in adaptive CW-DA estimator

is automatically optimized according to SNR, ∆νT , nonlinear phase noise, and mod-

ulation format. No preset parameters are required. Furthermore, we demonstrate that

cycle slip probability is affected by the choice of filter length. Besides inheriting the

advantages of CW-DA-ML, adaptive CW-DA estimator is superior in terms of low

cycle slip probability, large nonlinear phase noise tolerance, and low complexity.

A novel optical solution, where a passive optical delay interferometer (DI) is in-

corporated before the photodetector in the direct detection receiver, is presented for

ROF receiver design in Chapter 5. DI equalizes the band-limitation of RSOA, counter-

chirps the pulse to extend transmission reach, and makes the signal immune to CD-
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1.4 Thesis Outline

induced fading, without any additional signal processing at the RBS. Bandwidth equal-

ization by DI enables transmission at RF band which further increases the achievable

link distance due to reduced in-band beat-noises generated by Rayleigh backscattering

at the receiver, compared to baseband transmission after a downconversion at the RBS.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we examine the merits of various 4-, 8-, and 16-point constellations

in terms of their AWGN resilience, phase rotation tolerance, and transmitter imple-

mentation complexity. A comprehensive description of coherent optical transmission

comprising the transmitter, channel, and receiver is given. Several popular DSP based

carrier estimators in the literature are discussed.

In Chapter 3, we address the carrier estimation problem in coherent receivers

for long haul transmission systems. CW-DA-ML estimator for joint phase noise and

frequency offset estimation is introduced. A comprehensive performance analysis of

CW-DA-ML, with respect to other estimators, for various modulation formats in a

channel impaired by AWGN, phase noise, and frequency offset is performed.

In Chapter 4, we emphasize the need for adaptive filter lengths, compared to con-

ventional fixed-length filters, in carrier estimators used for coherent receivers. Adap-

tive CW-DA carrier estimator with an adaptive effective filter length is introduced.

Nonlinear phase noise tolerance, cycle slip probability, and complexity of carrier esti-

mators are analyzed.

In Chapter 5, we consider upstream receiver designs at the CO in IMDD RoF

systems to tackle the issues of constrained modulation bandwidth, limited transmission

distance, and signal fading, due to RSOA and fiber CD. A new direct detection receiver

design is proposed and experimentally demonstrated via an upstream transmission of

9



1.4 Thesis Outline

a 6-GHz binary phase-shift keying (BPSK) radio signal using a directly modulated

RSOA.

Finally, conclusion and several suggestions for future work are presented in Chap-

ter 6. Throughout this thesis, E[·], | · |, bac, and dae are the expectation, modulus op-

erator, largest integer smaller than a, and smallest integer larger than a, respectively.

Superscript ∗, T , and H denotes conjugate, transpose, and conjugate transpose, re-

spectively. Vectors and matrices are denoted by lowercase and uppercase bold letters,

respectively. All vectors are assumed to be column vectors.

10



Chapter 2

Coherent Optical Systems

Various signaling schemes are first reviewed, followed by a modeling of the coher-

ent optical transmission system and a review of popular carrier estimators from the

literature.

2.1 Modulation Formats

2.1.1 Several 4-, 8-, and 16-Point Constellations

In Fig. 2.1, we consider several prospective 4-, 8-, and 16-ary discrete-point constella-

tions which use both field quadratures. We compare the constellations in terms of:

1. minimum Euclidean distance between adjacent points dmin, characterizing its
resilience against AWGN,

2. minimum angular separation between adjacent points with the same radius φmin,
characterizing its phase-rotation resilience against phase noise and frequency
offset, and

3. simplicity in transmitter implementation.

The dmin is computed with a unity average symbol power constraint. Larger values of

dmin and φmin imply greater AWGN and phase-rotation resilience, respectively.
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2.1 Modulation Formats

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Signal constellation and bits-to-symbol mapping for (a) QPSK, (b)
8-QAM, (c) 8-PSK, (d) 16-QAM, (e) 16-Star, and (f) 16-PSK.

In 4-point constellations, we only consider QPSK as it is well established to

achieve the best performance for AWGN channel with the largest dmin =
√

2 among

all 4-point constellations [7]. The QPSK signal is also easy to generate.

The 8-QAM is defined to be the constellation shown in Fig. 2.1(b). In an AWGN

channel, 8-QAM (dmin = 0.919) outperforms 8-PSK (dmin = 0.765) but is marginally

inferior to the optimum 8-point constellation, 8-Hex (dmin = 0.963), by 0.35 dB [7,

47]. However, 8-QAM (φmin = π/2) has better phase-rotation tolerance than 8-PSK

(φmin = π/4) and 8-Hex (φmin < π/3). Unlike 8-Hex, 8-QAM has a simple transmitter

configuration realizable with MZMs and couplers [25], and has a simple differential

encoding technique as will be shown later. Hence, we only consider 8-QAM for its

desirable properties as outlined above and 8-PSK for further analysis.
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2.1 Modulation Formats

The optimum ring ratio, RR = A2/A1, for 16-Star in an AWGN channel max-

imizing the distance between adjacent points in the inner ring and that between the

two rings is obtained when RR = 1 + 2 cos(0.375π) ≈ 1.77 [48]. We have used

RR = 1.77 in this thesis, as the optimum RR with respect to phase rotations only

deviate slightly from 1.77 [49]. In an AWGN channel, 16-QAM (dmin = 0.632) out-

performs 16-Star (dmin = 0.534) and 16-PSK (dmin = 0.390), but is second by 0.5

dB to the optimum 16-point hexagonal-like constellation [47]. 16-QAM is preferred,

compared to the optimum 16-point constellation, due to its simple transmitter imple-

mentation where integrated 16-QAM modulators are already available [50] and simple

differential encoding technique as will be shown later. However, in terms of phase-

rotation tolerance, 16-Star (φmin = π/4) outperforms 16-QAM (φmin = 0.20π & π/2)

and 16-PSK (φmin = π/8). Hence, we only consider 16-QAM for its desirable proper-

ties as outlined above, 16-Star for its phase rotation tolerance, and 16-PSK for further

analysis.

2.1.2 BER Performance

The maximum likelihood detector in an AWGN limited and phase-rotation limited

channel has a Euclidean metric with straight-line decision boundaries and a non-Eucli-

dean metric with circular-line boundaries forming polar wedges, respectively [25].

Considering the (i) implementation difficulty of a non-Euclidean metric with circular-

line boundaries which requires lookup tables, (ii) advances in laser linewidth which

has made DFB lasers with 10 kHz linewidth available [51], and (iii) low SNR operat-

ing region of modern systems where AWGN is dominant; we use the Euclidean metric

with straight-line decision boundaries in this thesis. The BER over an AWGN channel

without differential encoding for MPSK given by [52]

BER =
2

log2M
·Q
[√

2γb log2M sin
( π
M

)]
, (2.1)
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Figure 2.2: BER performance in AWGN channel with and without differential
encoding.

8-QAM given by [8]

BER =
22

16
·Q

[√
6γb

3 +
√

3

]
, (2.2)

16-QAM given by [51]

BER = 1−

[
1−

[
2

log2M

][
1− 1√

M

]
·Q

[√
3γb log2M

M − 1

]]2

, (2.3)

and 16-Star obtained through Monte Carlo (MC) simulation, are plotted in Fig. 2.2.

Here, M is the number of signal points in the constellation and γb is the SNR per bit.

Theoretically achievable γb values without differential encoding at BER = 10−3 are

given in the second column of Table 2.1.

2.1.3 Differential Encoding Technique

We present a generalized sector-based differential encoding technique, built upon the

idea in [53], which is applicable to all constellations having≥ 2 rotationally symmetric
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2.1 Modulation Formats

Table 2.1: SNR per bit values at BER = 10−3

Format
AWGN channel

without differential
encoding (dB)

AWGN channel
with differential
encoding (dB)

Differential
encoding penalty

(dB)

QPSK 6.82 7.38 (MC) 0.56

8-QAM 9.04 9.33 (MC) 0.29

8-PSK 10.01 10.60 (MC) 0.59

16-QAM 10.53 10.97 (MC) 0.44

16-Star 11.64 (MC) 11.99 (MC) 0.35

16-PSK 14.37 14.97 (MC) 0.60

MC : Result from Monte Carlo simulation.

positions and no dc signal point (i.e., no signal point at the origin). In a q-sector

rotationally symmetric MPSK and M -ary QAM (MQAM) constellation, any signal

point can be obtained by rotating a corresponding signal point from the first rotationally

symmetric sector. Hence, the k-th information signal point s(k) can be represented

by s(k) = ρ(k)d(k). Here ρ(k) = ej2πi/q, i ∈ {0, . . . , q − 1}, is the appropriate

sector-rotation term and d(k) is the corresponding constellation point of s(k) in the

first rotationally symmetric sector. The kth differentially-encoded symbol m(k) is

then obtained as m(k) = ρ̄(k)d(k), where ρ̄(k) = ρ(k)ρ̄(k− 1). Here, ρ̄(k) represents

the current sector in which m(k) lies. Differential decoding of the kth symbol m(k) at

the receiver proceeds as

s(k) =
m(k)

ρ̄(k − 1)

=
ρ̄(k)d(k)

ρ̄(k − 1)
(2.4)

The initial sector ρ̄(−1) = 1.

Differential encoding increases the BER as any symbol detection error manifests

itself twice through differential encoding and is depicted in Fig. 2.2. The differential

encoding induced penalty at BER = 10−3 in an AWGN channel is summarized in
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2.2 Coherent Optical Transmission System

column three of Table 2.1. To minimize bit errors due to symbol errors, careful bits-

to-symbol mapping is needed. For constellations where q = 2q̄ for some integer q̄, we

adopt the following bits-to-symbol mapping scheme. All symbols within each sector

are assigned the same first q̄ bits, in order to minimize bit errors due to adjacent symbol

errors caused by AWGN. These first q̄ bits are differentially encoded for symbols in

adjacent sectors. The last log2(M)− q̄ bits of each symbol are encoded to be rotation-

ally invariant, thus making them immune to cycle slips. The bits-to-symbol mapping

for differentially encoded signals is shown in Fig. 2.1.

2.2 Coherent Optical Transmission System

Consider the dual-polarization optical transmission system with an intradyne receiver

shown in Fig. 2.3. The transmission system can be divided into the transmitter, chan-

nel, and receiver portions. The receiver comprises of four key subsystems, namely,

(i) optical hybrid downconverter which linearly maps the optical field into electrical

signals, (ii) ADC which quantizes the analog signal into a set of discrete values, (iii)

DSP modules which compensate for transmission impairments, and (iv) the symbol

detector which performs coherent symbol detection.

Key DSP modules comprise of (i) clock recovery, (ii) CD compensation, (iii)

polarization demultiplexing and polarization-mode dispersion (PMD) compensation,

and (iv) carrier phase and frequency estimation. In principle, all linear impairments

can be compensated ideally using digital filters [52].

The coherent transmission system adopted in this thesis is described in detail next.

2.2.1 Transmitter

The transmitter laser output is split into two orthogonal polarizations, −→x and −→y , by a

polarization beam splitter (PBS). The two polarizations are modulated by separate data
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Figure 2.3: Polarization multiplexed coherent optical system. Tx: transmitter.

modulators and recombined in a polarization beam combiner. The input optical field

into the fiber in each polarization can be written as

Et(t) =
∑
k

√
Pt(k)ejφ(k)h(t− kT )ej(θs(t)+ωst) (2.5)

where T is the symbol period. Pt(k) and φ(k) represents the power and phase, respec-

tively, of the kth transmitted symbol. Here, h(t) is the pulse shape, assumed to be a

non-return-to-zero (NRZ) pulse with the normalization
∫
|h(t)|2 = T . In Eq. (2.5),

θs(t) and ωs are the phase noise and angular frequency of the transmitter laser, respec-

tively. The phase noise arises due to nonzero linewidth of the Lorentzian line-shaped

laser.
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2.2 Coherent Optical Transmission System

2.2.2 Channel

• Fiber Loss

The channel consists of NA fiber spans of equal length Lf . Material absorption,

Rayleigh scattering, and waveguide imperfections contribute to the fiber attenuation

coefficient α which reduces the signal power. If Pin is the input power, then the output

power Pout at the end of a fiber of length Lf is

Pout = Pine
−αLf . (2.6)

It is customary to express α in units of dB/km using the relation [54]

α(dB/km) = − 10

Lf
log10

(
Pout
Pin

)
= − 10

Lf
log10

(
e−αLf

)
≈ 4.343α (2.7)

where Eq. (2.6) was used in the second step above and α(dB/km) is referred to as the

fiber-loss parameter. Modern day fiber loss is reduced to ∼0.2 dB/km at an optical

wavelength of 1550 nm [55].

• Optical Amplifier

Optical amplification is employed to avoid frequent optoelectronic regeneration

along the link due to fiber loss. Fiber loss in each span is assumed to be compensated

exactly by an inline erbium-doped fiber amplifier (EDFA) of gain G = eαLf . The

output and input powers of an amplifier are related by Pout = GPin. Optical amplifiers

produce spontaneous emission which degrades the SNR of the amplified signal. At the

output of the ith EDFA, noise nASE,i(t) · ejωst is added to the signal. Here, nASE,i(t) is

the low-pass representation of the amplified spontaneous emission (ASE) noise. It is

white, zero-mean, and circularly symmetric complex Gaussian, with spectral density
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2.2 Coherent Optical Transmission System

per state of polarization given as [7]

Ssp = (G− 1)
h̄c

λ
nsp, (2.8)

where nsp is the spontaneous-emission factor, h̄ is the Planck’s constant, c is the speed

of light in vacuum, and λ is the optical carrier wavelength. The quantity h̄c/λ is the

photon energy. The nsp can range from 1 in an ideal amplifier to 3.15 in practical

amplifiers [54]. Variance of nASE,i per polarization defined over a filter bandwidth Bo

matched to the signal is σ2
ASE = SspBo.

2.2.3 Receiver

• Optical Hybrid Downconverter

The front end of the receiver consists of a polarization- and phase-diversity op-

toelectronic downconverter. The received optical field Er(t) is separated into two or-

thogonal polarizations and are separately mixed with a polarization-split LO laser, us-

ing two single-polarization 2× 4 90◦ optical hybrids in parallel. Polarization-division

multiplexed (PDM) signals can be demultiplexed by the ensuing DSP modules without

the need for optical dynamic polarization control at the receiver front end [20]. The

LO optical field per polarization state can be described as

ELO(t) =
√
PLOe

j(θLO(t)+ωLOt) (2.9)

where PLO, θLO(t), and ωLO are the power, phase noise, and angular frequency of the

LO laser. The LO laser is free running, in contrast to a homodyne downconverter where

the LO need to be phase- and frequency-locked to the incoming optical signal. As a

consequence, the received optical field is downconverted to an intermediate angular

frequency of ∆ω = ωs − ωLO. The transfer matrix of the each optical hybrid is given
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by [56]

HOH =
1

2



1 1

1 −1

1 j

1 −j


. (2.10)

Note that the 3-dB fiber couplers of the optical hybrid in Fig. 2.3 functions the same

as a 50/50 beam splitter. In each polarization, the outputs of HOH · [Er(t), ELO(t)]T

are square-law detected by two pairs of balanced photodetectors and their difference

signal constitute the in-phase (I) and quadrature (Q) photocurrents as

iI(t) =
R

4
|Er(t) + ELO(t)|2 − R

4
|Er(t)− ELO(t)|2 + ish,I(t) + ith,I(t)

= RRe[Er(t)E
∗
LO(t)] + ish,I(t) + ith,I(t) (2.11)

and

iQ(t) =
R

4
|Er(t) + jELO(t)|2 − R

4
|Er(t)− jELO(t)|2 + ish,Q(t) + ith,Q(t)

= RIm[Er(t)E
∗
LO(t)] + ish,Q(t) + ith,Q(t), (2.12)

respectively. Here, R is the photodetector responsivity. Noises ish,I and ish,Q are shot

noises caused by random fluctuation in number of electron-hole pairs generated within

the photodetector. Assuming PLO � Pt, the shot noise ish = ish,I + ish,Q have a

two-sided power spectral density of Ssh = %RPLO, where % is the electron charge.

The thermal noise ith is caused by random thermal motion of electrons at the receiver.

Typically, long-haul amplified transmission systems are ASE noise limited since ASE

noise is generally much larger than shot noise and thermal noise [8, 57]. Shot noise

and thermal noise are thus neglected in all our studies.

Desirable properties of photodetectors include high sensitivity, high bandwidth,

low noise, and low cost. Commonly used photodetectors for lightwave systems with
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wavelengths in the range of 1000− 1700 nm include InGaAs based p-i-n (PIN) photo-

diodes and avalanche photodiodes (APDs). Internal current gain of APDs can provide

about 10 times higher responsivity R, but requires much larger bias voltage values,

than PIN photodiodes [54]. Additionally, there is an inherent trade-off between the

internal current gain and the bandwidth of APDs. Thermal noise remains the same for

both PIN photodiodes and APDs. However, increased shot noise in APDs due to noisy

avalanche-gain process can reduce the SNR by an excess noise factor compared to PIN

photodiodes in the shot-noise limit [54]. APDs are generally more expensive than PIN

photodiodes [58].

In an intradyne receiver, optical frequency bands around ωLO+∆ω and ωLO−∆ω

will map to the same intermediate angular frequency. To avoid crosstalk in a dense

WDM system and to avoid excess ASE noise from unwanted image bands, an opti-

cal filter of bandwidth Bo matched to a single channel’s signal bandwidth is required

before the downconverter.

• Analog-to-Digital Converter

The analog output of the photodetectors are digitized by ADCs at a rate of T0/T ,

where T0 is a rational oversampling rate. The optical signal and noise statistics are

fully preserved in the sampled signal, when sampling the photocurrents at or above the

Nyquist rate. For asynchronous sampling, an oversampling of T0 ≥ 2 is preferred as it

enables clock recovery [59].

• Clock Recovery

In practice, the receiver’s clock frequency may differ from the symbol rate, caus-

ing 1/TADC 6= 1/T where 1/TADC is the clock frequency of the receiver [60]. Hence,

the originally digitized signal {x(l)} at time t = lTADC/T0 is resampled through in-

terpolation to produce the samples {y(k)} at time t = t0 + kT/T0 [59]. Here, t0 is the

timing delay and k, l = 0, 1, 2, . . ..
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Once the clock frequency is recovered, a timing-delay recovery algorithm, e.g.,

[61], [62], or [63], is used to produce a timing-delay estimate t̂0. Using t̂0, symbol

synchronization can be achieved such that one sample coincides with the decision in-

stant per symbol. This synchronization can be performed either by interpolating the

samples {y(t0 + kT/T0)} to obtain {y(t0 − t̂0 + kT/T0)} or by directly changing the

interpolation instants in the clock-frequency recovery stage above via feedback of t̂0.

• Dispersion Compensation and Polarization Demultiplexing

Dispersion refers to the phenomenon where different components of an optical

pulse travels at different velocities in the fiber and arrive at different times at the re-

ceiver. This would lead to a pulse broadening which causes intersymbol interference

(ISI).

In CD, different spectral components of an optical pulse travel independently at

different group velocities and do not arrive simultaneously at the fiber output. CD

in fibers arise due to a combination of material and waveguide dispersion, where

the contribution of the latter is generally smaller than the former except near the

zero-dispersion wavelength [64]. Material dispersion occurs due to the wavelength-

dependence of the fiber’s refractive index, whereas waveguide dispersion is induced

by the waveguide’s structure. CD acts like an all-pass filter with a flat amplitude re-

sponse and its transfer function, acting on the phase of the signal, is given by [54]

HCD(f) = exp
(
−j2β2Lfπ

2f 2
)

(2.13)

where f is the frequency and β2 is the group velocity dispersion (GVD) parameter. The

GVD is related to the dispersion parameter DCD, expressed in units of ps/(nm·km),

through

DCD = −2πc

λ2
β2. (2.14)

CD is a linear static effect and can be compensated optically by employing in-line
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dispersion-compensating fiber (DCF) with GVD β2,DCF and fiber length Lf,DCF such

that β2,DCFLf,DCF = β2Lf . Nevertheless, inexact matching of β2 and Lf would leave

residual CD which necessitates electrical CD compensation at the receiver.

Another source of pulse broadening is PMD. A standard single-mode fiber (SSMF)

can support two orthogonal polarization modes. Deviations from perfect cylindrical

symmetry in the fiber leads to randomly changing birefringence along the fiber. Such

fiber possesses a “fast axis” and a “slow axis” in orthogonal polarizations, due to a

smaller and a larger associated mode index, respectively [65]. These polarization states

are known as the principal states of polarization (PSP). A pulse input to a fiber, which

is not polarized along any of the PSP, splits between the two PSP. Hence, different

polarization components of a pulse in a SSMF travels at different group velocities and

arrive with a timing offset at the receiver, called differential group delay (DGD) τ . The

frequency response of the fiber with first-order PMD has the form

HDGD(f) =

cos θ′ − sin θ′

sin θ′ cos θ′


ej2πfτ 0

0 e−j2πfτ


 cos θ′ sin θ′

− sin θ′ cos θ′

 (2.15)

where θ′ is the angle between the reference polarizations and the PSP of the fiber [66].

PMD can fluctuate on the order of a millisecond [67]; it needs continuous tracking and

compensation at the receiver. PMD becomes a limiting factor for long-haul systems

operating at high bit rates [54] and can cause outage if uncompensated [68]. Besides

PMD-induced pulse broadening, PMD also causes crosstalk between polarizations in

a PDM system which necessitates polarization demultiplexing [69].

Although electronic equalization for CD, PMD, and polarization crosstalk could

be realized in a single structure, it is beneficial to partition the equalizer into static

and dynamic portions [70]. Hence the equalization process consists of a linear filter to

compensate for the relatively time-invariant CD, followed by a bank of four adaptive

finite impulse response (FIR) filters arranged in a butterfly structure to compensate for
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the time-varying PMD and polarization crosstalk [71]. The butterfly-like filter struc-

ture performs the inverse Jones matrix of the channel on the input block of samples xin

and yin such that the outputs are given by

xout = wT
xxxin + wT

xyyin (2.16)

yout = wT
yxxin + wT

yyyin (2.17)

where wT
xx, wT

xy, wT
yx, and wT

yy are the FIR filter-weight vectors. Several prevalent

algorithms used to adapt the filter weights of the CD, PMD, and polarization crosstalk

equalizers are minimum-mean-square error [72], constant modulus algorithm [73], re-

cursive least squares, least-mean squares, and radius directed equalization [66]. Com-

pared to FIR filters, infinite impulse response filters require less taps but tend to be

unstable especially at larger values of residual CD [74].

If the system parameters are known, the filter weights of a time-domain transver-

sal equalizer for CD can be obtained by computing the inverse Fourier transform of the

inverse CD transfer function as [75]

wCD,l =
T

T0

∫ ∞
−∞

H−1
CD(f) exp

(
j2πf

lT

T0

)
df, (2.18)

where l = 1, 2, . . . , LCD. A filter length of LCD = 2πT0|β2|Lf/T 2 is sufficient to fully

compensate the CD present [8]. Alternatively, CD can be compensated in the frequency

domain by multiplying the Fourier transform of the received signal with H−1
CD(f), and

converting the output back to time domain for subsequent DSP. Taking the inverse of

HCD(f) amounts to inverting the sign of the GVD parameter β2 in Eq. (2.13).

Fractionally spaced equalizers (FSEs), compared to symbol spaced equalizers,

can adaptively synthesize a single structure with the best combination of matched fil-

ter and equalizer [76, 77]. Unlike symbol spaced equalizers which are susceptible to

sampling time errors, FSE is insensitive to sample timing [78]. FSE with an adequate

filter length completely compensates unlimited amount of CD and first-order PMD,
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whereas the compensable amount of dispersion only approaches an asymptote in sym-

bol spaced equalizers [72]. An oversampling rate of T0 = 2 in conjunction with FSE

is preferred as it is invariably used for compensation of CD and PMD, and polarization

demultiplexing in experiments [28, 75]. Insensitivity to sample timing allows FSE to

be deployed ahead of the clock recovery module for dispersion mitigation in scenarios

where reliable clock recovery is hampered by large dispersion values.

• Input Samples to Carrier Estimator

In Chapter 3 and 4, we assume ideal signal conditioning by the ADC and the

preceding DSP modules, namely, clock recovery, CD compensation, and polarization

demultiplexing and PMD compensation. This is equivalent to having a received optical

field per state of polarization of

Er(t) =
∑
k

√
Pr(k)ejφ(k)h(t− kT )ej(θs(t)+ωst) + nASE(t)ejωst. (2.19)

where nASE =
∑NA

i=1 nASE,i is the accumulated ASE white noise with mean zero and

variance NAσ
2
ASE . Assuming perfect compensation by EDFA for fiber loss in each

span, we have received symbol power Pr(k) = Pt(k). Substituting Eq. (2.19) into

Eq. (2.11) and Eq. (2.12), and sampling, we obtain the combined in-phase and quadra-

ture photocurrents as

iI(k) + jiQ(k) =REr(k)E∗LO(k)

=R
√
Pr(k)PLOe

jφ(k)ej(θL(k)+∆ωk)

+R
√
PLOnASE(k)ej(−θLO(k)+∆ωk) (2.20)

where θL(k) = θs(k) − θLO(k) is the combined linear laser phase noise. We have

∆ω = 2π∆f where ∆f is the frequency offset between the transmitter and LO lasers.

The first term on the right-hand side of Eq. (2.20) is the desired signal-LO beat term,

and the second term is the LO-ASE beat noise. Using ideal balanced photodetection
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in the receiver fully suppresses the signal-ASE and ASE-ASE beat terms.

We let the input sample r(k) to the carrier estimator over the kth symbol interval

[kT, (k + 1)T ), which is clock synchronized with one complex sample per symbol, to

be

r(k) = iI(k) + jiQ(k)

= m(k)ej(θ(k)+∆ωk) + n(k) (2.21)

where m(k) = R
√
Pr(k)PLOe

jφ(k) is the kth symbol and θ(k) represents the total

phase noise impairment in the received sample. We have θ(k) = θL(k) in the linear

regime. Nonlinear phase noise impairment will be introduced in Section 4.4. The

linear laser phase noise θL(k) is modeled as a Wiener process

θL(k) =
k∑
l=0

ν(l), (2.22)

where ν(l)’s are independent and identically distributed Gaussian random variables

with mean zero and variance σ2
p = 2π∆νT [79]. Here, ∆ν is the sum of the 3-

dB linewidth of the transmitter and LO lasers. The modulo-2π reduced angular fre-

quency offset ∆ω is assumed to have a probability density function (PDF) given by

p(∆ω) = 1/2π for ∆ω ∈ [−π,+π), where ∆ω is a random variable. The ∆ω is

assumed to be time invariant unless otherwise stated. In Eq. (2.21), the LO-ASE beat

noise R
√
PLOnASE(k)ej(−θLO(k)+∆ωk) is modeled by an equivalent zero-mean additive

white Gaussian noise source n(k) with variance σ2
n = R2PLONAσ

2
ASE . The SNR per

bit in a single polarization is defined as γb = E[|m(k)|2]/(σ2
n log2M).

All γb penalties are referenced to the γb of a perfectly coherent ASE-noise-limited

receiver at BER = 10−3 (without differential encoding) which is summarized in the

second column of Table 2.1. Differential encoding of data is assumed in Chapter 3 and

4 to arrest cycle slips in the carrier estimators, unless otherwise stated.
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• Carrier Estimator

In Chapter 3 and 4, we consider the detection of an uncoded data symbol sequence

{m(k)} transmitted over the channel illustrated in Fig. 2.3 with unknown carrier phase

and frequency offset, as modeled by Eq. (2.21). Since the data is uncoded, the sym-

bols of {m(k)} are independent and each assumes one of the equally likely points in

the signal set {si}M−1
0 . Elements of the phase noise sequence {θ(k)} are temporally

correlated since {θL(k)} has an autocorrelation of

E[θL(k)θL(l)] = σ2
p ·min[k, l]. (2.23)

The assumption of an AWGN channel with no ISI makes the elements of the noise

sequence {n(k)} independent. The elements of the received signal sequence {r(k)}

are rendered independent when conditioned on given values of {m(k)}, {θ(k)}, and

∆f . Hence, each symbol m(k) in the sequence {r(k)} will be detected individually,

i.e., symbol-by-symbol with minimum symbol error probability. We assume mutual

statistical independence among {m(k)}, {θ(k)}, and ∆f , which leads to the separation

of the carrier estimation problem from the symbol detection problem [80]. Therefore,

at high SNR, the optimum symbol-by-symbol receiver structure consists of a carrier

estimator followed by a coherent symbol detector, as illustrated in Fig. 2.3 [80].

Carrier estimator is employed to produce an estimate ζ̂(k) of the true carrier pha-

sor ζ(k) = ej(θ(k)+∆ωk) in the received sample r(k). Carrier estimation and symbol de-

tection is performed independently for each polarization channel as shown in Fig. 2.3.

All equations and quantities expressed hereafter are thus meant for one polarization

channel.

• Symbol Detector

Treating the carrier-estimate ζ̂(k) generated by the carrier estimator as the true

phasor ej(θ(k)+∆ωk), the sample r(k) is multiplied by ζ̂∗(k) to compensate for the carrier

phase and angular frequency offset. The derotated sample r(k)ζ̂∗(k) is plugged into
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the maximum-likelihood minimum-Euclidean distance detector for an AWGN channel

given by [52]

m̂(k) = arg min
0≤i≤M−1

∣∣∣r(k)ζ̂∗(k)− si
∣∣∣ (2.24)

to perform a (partially) coherent symbol detection. Here, arg mini a(i) selects the i

that minimizes a(i). Assuming unconstrained symbol energy, the symbol detector is

simplified by expanding the equation, dropping terms that do not depend on the trial

symbol si, and rearranging them to yield

m̂(k) = arg min
0≤i≤M−1

[∣∣∣r(k)ζ̂∗(k)
∣∣∣2 + |si|2 −Re

[
2r(k)ζ̂∗(k)s∗i

]]
= arg min

0≤i≤M−1

[
|si|2 −Re

[
2r(k)ζ̂∗(k)s∗i

]]
= arg max

0≤i≤M−1
Re

[
r(k)ζ̂∗(k)s∗i −

1

2
|si|2

]
. (2.25)

The (partially) coherent symbol detector declares the signal si from the signal set

{si}M−1
i=0 which maximizes Re[r(k)ζ̂∗(k)s∗i −(1/2)|si|2] as the symbol decision m̂(k).

2.3 Frequency and Phase Estimators

Here, clock-aided discrete-time observation based carrier estimation algorithms are

considered, i.e., the receiver has perfect knowledge of symbol timing and uses digitized

signal. Carrier estimators available in the literature consists of a two stage sequential

process of frequency offset compensation followed by phase noise compensation, as

phase estimators are only unbiased in the absence of frequency offset [59].

We review several popular phase and frequency estimators next. The statistical

models of the phase noise θ(k), and angular frequency offset ∆ω, are not known to

the receiver. All phase quantities θ(k) are treated modulo-2π and frequency offset

quantities ∆f are treated modulo-1/T to account for their circular nature.
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2.3.1 Fast Fourier Transform based Frequency Estimator

A family of non-data aided (NDA) frequency estimators achieving the modified Cramer

Rao bound at high SNR [81] was proposed in [82] and later applied to optical commu-

nications in [83]. The frequency estimate ∆f̂ is given by

∆f̂ =
1

q
arg max
|∆f̄ |<1/2T

∣∣∣∣∣
N−1∑
k=0

rq(k)e−j2π∆f̄Tk

∣∣∣∣∣ (2.26)

whereN is the received sample size over which the frequency acquisition is performed

and is illustrated in Fig. 2.4.

Peak search

Figure 2.4: Fast Fourier transform based frequency estimator.

Cyclostationary statistics is exploited for modulation removal by raising the re-

ceived signal to the qth power, where q = M in MPSK and q = 4 in 16-QAM.

Equation (2.26) leads to a computationally intensive peak search in the periodogram

of rq(k). The peak search can be implemented by fast Fourier transform (FFT) tech-

nique [84].

The frequency estimate resolution is limited by N to 1/qNT . A larger N im-

proves the frequency estimate accuracy, but increases the acquisition time and FFT

complexity. These conflicting requirements call for a trade-off but no automatic opti-

mization method is known. FFT based frequency estimator (FFTFE) suffers from an

undesirable SNR threshold effect, where a noise peak exceeding the true frequency

peak causes a large frequency estimation error (known as an outlier) below some criti-

cal SNR value [85]. The likelihood of outliers increases with decreasing SNR, having

a disabling effect on FFTFE at low SNR.
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2.3.2 Differential Frequency Estimator

An NDA phase differential frequency estimator (DiffFE) was proposed in [86] and

later applied to optical communications in [87] for MPSK modulations. The sample-

autocorrelation based frequency estimator is given by

∆f̂ =
1

2πMT
arg

(
N−1∑
k=0

(r(k)r∗(k − 1))M
)

(2.27)

and is illustrated in Fig. 2.5.

Figure 2.5: Differential frequency estimator.

DiffFE performs complex conjugate multiplication of adjacent received samples.

The phase differenced samples are raised to M th power for modulation removal, sum-

med overN samples to smooth out the noise, and the argument of the sum is divided by

2πMT to obtain the frequency estimate. Accuracy of ∆f̂ is dependent on the N used,

but choice of optimum N is rather subjective and no adaptive optimization techniques

have been reported.

DiffFE was extended to 16-QAM signals by only phase differencing consecu-

tive Class I symbols in [88]. Class I symbols comprise signal points with modulation

phases of π/4 + iπ/2 where i = 0, 1, 2, 3, i.e., signal points s0, s3, s4, s7, s8, s11, s12,

and s15 in Fig. 2.1(d). The use of only a subset of symbols for frequency estimation

will cause performance degradation in channels with time-varying frequency offset.

2.3.3 BlockM th Power Phase Estimator

A prevalent NDA phase estimator is the block M th power phase estimator (MPE),

which was presented for MPSK in [89]. M th power synchronizer was shown to be
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an approximate maximum likelihood feedforward phase estimator at low SNR [90,

Section 5.7.4]. The phase estimate θ̂ is given by

θ̂ =
1

M
arg

(
L−1∑
l=0

rM((i− 1)L+ l)

)
, i = 1, 2, . . . (2.28)

and is illustrated in Fig. 2.6.

Peak search

Figure 2.6: Block M th power phase estimator.

Modulation is removed by raising samples to the M th power. Received samples

are processed in blocks of length L to yield a single phase estimate θ̂ which is used to

phase-correct all L samples in the respective block. The estimate is biased for symbols

away from the center of the block [91] because the phase noise θ may not remain

constant across the block. MPE was adapted for 16-QAM through a QPSK partitioning

technique in [92].

Since the arg(·) function returns values in the range of ±π, θ̂ is restricted within

±π/q, where q is the number of rotationally symmetric sectors in the constellation.

This leads to q-fold ambiguity in θ̂, which can be resolved by using differential en-

coding. Due to the modulo-2π/q operation in MPE, θ̂ exhibits a jump, compared to

that of the previous block, every time the phase noise θ crosses an odd multiple of

π/q. Hence, θ̂ needs to be phase unwrapped. Phase unwrapping ensures the difference

between consecutive phase estimates is within ±π/q by adding or subtracting some

integer multiple of 2π/q, which can be summarized as follows [89]:

θ̂(k) =


θ̂(k) + 2π

q
, if θ̂(k)− θ̂(k − 1) > π

q

θ̂(k)− 2π
q
, if θ̂(k)− θ̂(k − 1) < −π

q

θ̂(k), else

. (2.29)
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2.3.4 Blind Phase Search

An NDA joint estimation of data symbol and phase was introduced as the blind phase

search (BPS) method in [51], which was previously developed by [93,94]. The general

idea of BPS, illustrated in Fig. 2.7, is to try multiple test phase angles and to pick the

angle which yields the shortest Euclidean distance to the nearest signal point in the

constellation.

  

 

 

 

Symbol detector

Test phase

Test phase

Test phase

which minimizes

Declare

for

Figure 2.7: Blind phase search estimator.

The received sample r(k) is first individually derotated by β test phase angles θ̄i,

where

θ̄i =
i

β
· 2π

q
, i ∈ {0, . . . , β − 1}. (2.30)

For each θ̄i, the squared magnitude error between the derotated sample and correspond-

ing symbol decision is averaged over L samples for noise smoothing as

dε,i(k) =

k+bL
2
c∑

l=k−dL
2
e+1

∣∣∣r(k)e−jθ̄i − m̂i(k)
∣∣∣2. (2.31)

Here, m̂i(k) is the symbol decision on r(k)e−jθ̄i . The θ̄i whose index yields the small-

est average squared magnitude error dε,i(k) is declared as the phase estimate θ̂(k) at

time k following

θ̂(k) = arg min
0≤i≤β−1

[dε,i(k)]. (2.32)
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Due to a q-fold ambiguity inherent in BPS, phase unwrapping of θ̂(k) according to

Eq. (2.29) is required. The accuracy of θ̂(k) is inversely proportional to the complexity

of BPS and is determined by β, but no automatic optimization for β is available.

2.3.5 Decision-Aided Maximum-Likelihood Phase Estimator

A decision-aided phase estimator of interest is the decision-aided maximum-likelihood

(DA-ML) phase estimator derived in [95, 96] and illustrated in Fig. 2.8. The interest

in DA-ML lies in its maximum likelihood derivation, and its near optimum maximum-

likelihood phase estimation at high and medium SNR [97].
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Figure 2.8: DA-ML phase estimator.

The phase noise process {θ(k)} is assumed to vary slower than the symbol rate

such that we can approximate θ(k) to be piecewise constant over intervals longer than

LT , where L is an integer representing the filter length. In DA-ML, the maximum

likelihood phase estimate θ̂(k+ 1) at time k+ 1 is given by the argument of a complex

reference phasor U(k+1). The reference phasor is computed using the immediate past

L received samples as

U(k + 1) = C(k)
L∑
l=1

r(k − l + 1)m̂∗(k − l + 1) (2.33)

where m̂(k) is the symbol decision on r(k) made by the symbol detector according to
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Eq. (2.25) and C(k)

C(k) =

(
L∑
l=1

|m̂(k − l + 1)|2
)−1

(2.34)

is to normalize the magnitude of U(k + 1) in the event of a non-constant modulus

signal constellation. Derivation of DA-ML is provided in Appendix A.

An initial preamble ofK known symbols is required to startup the receiver, subse-

quently symbol decisions will be fed back to form the reference phasor. DA-ML avoids

additive noise contribution from higher powers (≥ 2) which are present in MPE [95].
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Chapter 3

Complex-Weighted Decision-Aided
Maximum-Likelihood Phase and
Frequency Estimation

Extending upon DA-ML [95, 96], we propose here a novel format-independent CW-

DA-ML estimator which jointly estimates the unknown phase noise and frequency

offset. The performance of CW-DA-ML is placed in perspective with respect to two

fundamental carrier estimators in the literature, namely, (i) FFTFE-MPE (refers to

FFTFE [82] followed by MPE [89, 92]) and (ii) DiffFE-MPE (refers to DiffFE [87,

88] followed by MPE [89, 92]). PA CW-DA-ML is introduced and performance gain

over its differential encoding counterpart is discussed. The robustness of CW-DA-

ML against a time-varying frequency offset is also studied. Finally, the necessary

ADC resolution for reliable operation is considered. Merits of QPSK, 8-QAM, 8-PSK,

16-QAM, 16-Star, and 16-PSK constellations are examined, and the most favorable

constellations are identified.

3.1 CW-DA-ML Estimator

CW-DA-ML estimator is derived, and its implementation, mean-square error (MSE)

learning curve, filter-weight adaptation, and optimum filter lengths are analyzed next.
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3.1.1 Principle of Operation

DA-ML, which utilizes the reference phasor U(k+1) for carrier estimation, was shown

to have a limited ∆fT tolerance in the range of 10−3 [98]. Hence, considering the

presence of an unknown angular frequency offset ∆ω, we propose here a new reference

phasor V (k + 1) to estimate the carrier at time k + 1 by filtering the immediate past L

received samples as

V (k + 1) = C(k)wT (k)y(k) (3.1)

where w(k) and y(k)

w(k) =[w1(k), w2(k), w3(k), . . . , wL(k)]T (3.2)

y(k) =[r(k)m̂∗(k), r(k − 1)m̂∗(k − 1), r(k − 2)m̂∗(k − 2),

. . . , r(k − L+ 1)m̂∗(k − L+ 1)]T (3.3)

are the L-by-1 filter-weight vector and the L-by-1 filter-input vector at time k, respec-

tively. In Eq. (3.1), C(k) is as per Eq. (2.34) and functions to normalize the magnitude

of the reference phasor V (k+1) to∼1 in a non-constant modulus signal constellation.

Presence of the normalizing factor C(k) and the removal of modulation using deci-

sion feedback in the filter input y(k), makes CW-DA-ML applicable to any arbitrary

modulation format.

Momentarily ignoring the phase noise θ(k) and AWGN n(k) in the received sam-

ple r(k) of Eq. (2.21), and assuming an ideal decision feedback of m̂(k) = m(k), the

filter input y(k) in Eq. (3.3) appears as

y(k) = [|m(k)|2ej∆ωk, |m(k − 1)|2ej∆ω(k−1), |m(k − 2)|2ej∆ω(k−2),

. . . , |m(k − L+ 1)|2ej∆ω(k−L+1)]T . (3.4)

Here, impaired by only the angular frequency offset, consecutive filter-input terms

differ by a phase rotation of ∆ω. The weight vector w(k) is designed to rotate each

36
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filter-input term to have the same angular frequency offset of ∆ω(k + 1). This leads

to the reference phasor V (k + 1) in Eq. (3.1) being angular-frequency-offset aligned

with the next received signal r(k + 1) = m(k + 1)ej∆ω(k+1), thus enabling coherent

demodulation.

From Eq. (3.4), it is intuitively clear that arg(w(k)) should equal [∆ω, 2∆ω,

3∆ω, . . . , L∆ω]T , but ∆ω is unknown in practice. Thus, we propose to choose

the weights automatically and adaptively at each time k based on the observations

{r(l), 0 ≤ l ≤ k} to minimize the sum-of-error-squares cost function J(k),

J(k) =
k∑
l=1

|e(l)|2

=
k∑
l=1

∣∣∣∣ r(l)m̂(l)
− C(l − 1)wT (k)y(l − 1)

∣∣∣∣2. (3.5)

The error e(l) is the difference between the desired response r(l)/m̂(l) and the ref-

erence phasor output of Eq. (3.1) at time l − 1 using the latest set of filter coeffi-

cients w(k). Minimization of the cost function J(k) forces the phasor V (l) to track

the normalized term r(l)/m̂(l), and thus forces arg(wi(k)) to track ∆ωi. Adapta-

tion of filter weights using a least-squares criterion, as opposed to a MSE criterion

J̃(k) = E[|e(k)|2], requires no statistical information about the AWGN, phase noise,

or frequency offset.

Minimizing J(k) with respect to w(k), we obtain the optimum filter-weight vec-

tor ŵ(k) as the solution of a least-squares normal equation

ŵ(k) = Φ−1(k)z(k), k ≥ 1 (3.6)

Φ(k) =
k∑
l=1

C2(l − 1)y∗(l − 1)yT (l − 1) (3.7)

z(k) =
k∑
l=1

C(l − 1)
r(l)

m̂(l)
y∗(l − 1) (3.8)
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3.1 CW-DA-ML Estimator

where Φ(k) is the L-by-L time-average autocorrelation matrix and z(k) is the L-by-1

time-average cross-correlation vector. Detailed derivation of ŵ is given in Appendix B.

The optimum ŵ(k) can adapt to follow time-varying channels, as it depends on the

observations {r(l)}kl=0.

An initial preamble of K known symbols is used to aid ŵ(k) to settle to a steady

state and for V (k) to acquire tracking of the phasor ej(θ(k)+∆ωk). Subsequently, the

filter operates in decision-directed mode. The structure of CW-DA-ML is shown in

Fig. 3.1. Note that the factor C(k) is not necessary in MPSK format and that CW-DA-

ML reduces to the classic DA-ML when w(k) = [1, 1, . . . , 1]T in Eq. (3.1).

  

 

 

 
 

 
   

 

 

 

Compute filter 

weights

Preamble 

sequence,

Symbol 

detector

Figure 3.1: CW-DA-ML estimator.

3.1.2 Implementation

The symbol-by-symbol receiver algorithm employing CW-DA-ML is outlined in Ta-

ble 3.1. In operating the filter of Eq. (3.1), we initialize V (0) = 1 and ŵ(0) = [1, 0,

. . . , 0]T to give a maximum gain of one on the first filter input term r(0)m̂∗(0). To

guarantee the existence of the inverse of Φ(k), we ensure that Φ(k) is nonsingular by

initializing Φ(0) = δIL. Here, IL is an L-by-L identity matrix and δ is a small positive

constant, e.g., δ = 0.01. Initialization of Φ(0) with δIL has no discernible effect on

the steady-state performance and convergence behavior of our CW-DA-ML.
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3.1 CW-DA-ML Estimator

Table 3.1: Symbol-by-symbol receiver employing CW-DA-ML

Initialize recursive algorithm at time k = 0

i. V (0) = 1

ii. ŵ(0) = [1, 0, 0, . . . , 0]T

iii. Φ−1(0) = δ−1IL

For each iteration, k = 0, 1, 2, . . .

1. Receiver decision

m̂(k) = arg max
0≤i≤M−1

Re

[
r(k)V ∗(k)s∗i −

1

2
|si|2

]
2. Preamble sequence, for 0 ≤ k ≤ K − 1

m̂(k) = m(k)

3. Form filter input vector

y(k) = [r(k)m̂∗(k), . . . , r(k − L+ 1)m̂∗(k − L+ 1)]T

4. Compute intermediate vector, ψ(k), for k ≥ 1

ψ(k) = C(k − 1)Φ−1(k − 1)y∗(k − 1)

5. Compute gain vector, g(k), for k ≥ 1

g(k) =
ψ(k)

1 + C(k − 1)yT (k − 1)ψ(k)

6. Compute a priori estimation error, ξ(k), for k ≥ 1

ξ(k) =
r(k)

m̂(k)
− V (k)

7. Recursively update filter-weight vector, ŵ(k), for k ≥ 1

ŵ(k) = ŵ(k − 1) + g(k)ξ(k)

8. Recursively update inverse correlation matrix, Φ−1(k), for k ≥ 1

Φ−1(k) = Tri{Φ−1(k − 1)− g(k)ψH(k)}
9. Compute next reference phasor

V (k + 1) = C(k)ŵT (k)y(k)

Direct inversion of Φ(k) at each time k to compute ŵ(k) in Eq. (3.6) is compute-

expensive with a complexity order of O(L3). Hence, we invert Φ(k) and obtain ŵ(k)

recursively using the matrix inversion lemma [52], as summarized by steps 4 to 8 in

Table 3.1. See Appendix C for details. Inversion of Φ(k) at each iteration is now re-

duced to a scalar division and the entire past observed symbols need not be stored. The
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3.1 CW-DA-ML Estimator

matrix Φ−1(k) is Hermitian, thus only the upper triangle of Φ−1(k) needs to be com-

puted whereas the lower triangle is obtained through diagonal reflection as signified by

the Tri operator in Table 3.1.This reduces the required memory size.

The implementation complexity of Table 3.1 scales as O(L2) but CW-DA-ML

can be equally realized in the form of a recursive lattice filter, further reducing the

complexity to O(L) real multiplications and additions per symbol [52]. Use of coor-

dinate rotation digital computers to implement the recursive lattice filter is expected to

further simplify the computation as it can perform vector rotations in complex plane

efficiently [99].

3.1.3 Mean-Square Error Learning Curve

The MSE of CW-DA-ML given by

J ′(k) = E

[∣∣∣∣ r(k)

m̂(k)
− V (k)

∣∣∣∣2
]

(3.9)

is empirically evaluated in Fig. 3.2 to elucidate the ensemble-average learning prop-

erties of CW-DA-ML and, most importantly, the sufficient preamble length K. Here,
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Figure 3.2: Learning curves for CW-DA-ML with different values of ∆f and
SNR.
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QPSK signals are used with ∆νTb = 4 × 10−5 and L = 5. The MSE curves are

obtained by averaging |r(k)/m̂(k)− V (k)|2 over 104 independent runs at each time

point k.

Analytically, the MSE J ′(k) can be expanded using Eq.(2.21) into

J ′(k) =E

[∣∣∣∣m(k)ej(θ(k)+∆ωk) + n(k)

m̂(k)
− V (k)

∣∣∣∣2
]

=E

[∣∣∣∣[ej(θ(k)+∆ωk) − V (k)
]

+
n(k)

m(k)

∣∣∣∣2
]

=E

[∣∣∣∣ n(k)

m(k)

∣∣∣∣2
]

+ E
[∣∣ej(θ(k)+∆ωk) − V (k)

∣∣2]
+ E

[[
ej(θ(k)+∆ωk) − V (k)

][ n(k)

m(k)

]∗]
+ E

[[
ej(θ(k)+∆ωk) − V (k)

]∗[ n(k)

m(k)

]]
(3.10)

where we have assumed ideal decision feedback, i.e., m̂(k) = m(k), in the second

step above. The reference phasor V (k) is independent of n(k) and m(k), as V (k) de-

pends only on {n(l),m(l)}k−1
l=0 . Additionally, ∆f , θ(k), n(k), and m(k) are assumed

to be mutually independent. Hence, the third and fourth terms on the right hand side

of Eq. (3.10) amount to zero as E
[
n(k)
m(k)

]
= E[n(k)]E

[
1

m(k)

]
= 0. Equation (3.10) then

reduces to J ′(k) = J ′min + J ′ex(k), where J ′min = E
[
|n(k)/m(k)|2

]
is the minimum

achievable MSE and J ′ex(k) = E
[∣∣ej(θ(k)+∆ωk) − V (k)

∣∣2] is the excess MSE due to

the tracking error of V (k). The J ′min can be expanded as

J ′min = E
[

1

|m(k)|2

]
E
[
|n(k)|2

]
= E

[
|m(k)|2

]
E
[

1

|m(k)|2

] E[|n(k)|2
]

E
[
|m(k)|2

]
=

η

γb log2M
(3.11)

where η = E
[
|m(k)|2

]
E
[
1/|m(k)|2

]
is a unitless constellation penalty [25], whose
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3.1 CW-DA-ML Estimator

value depends on the signal-point arrangement in the constellation. We have η equal

to 1 for MPSK and 1.889 for 16-QAM.

Fig. 3.2 includes the computed values of J ′min and J ′ex. The fast convergence

of CW-DA-ML’s learning curve demonstrates that a short preamble of approximately

twice the filter length, i.e., K ≈ 2L, is sufficient to aid V (k) in acquiring tracking of

ej(θ(k)+∆ωk), thus keeping the training overhead cost low. Notably, the excess MSE J ′ex

is indifferent to varying ∆f , attesting that frequency offset estimation by CW-DA-ML

is unbiased to the ∆f present. Finally, in assessing the tracking capability, we may use

the misadjustment criteria M defined as M = J ′ex/J
′
min. The M of around 0.26 in

Fig. 3.2 is slightly high, but this is due to poor choice of filter length L, the effects and

importance of which will be further discussed in Section 3.1.4 and 3.1.5.

3.1.4 Adaptation of Filter Weights

The adaptation of the steady-state filter weights {ŵi}Li=1 to different γb, ∆νTb, and

∆fT , in CW-DA-ML is analyzed by Fig. 3.3. Here, 16-QAM signals and a filter

length of L = 12 are used. Each steady-state value is obtained by averaging over 500

runs the average of its value from k = 50× 103 to k = 51× 103 in each run.

The ∆νTb and γb are varied, while the ∆fT is fixed at 8 × 10−2, in Fig. 3.3(a).

As ∆νTb and γb increases, recent received samples {r(l)} are weighted more by |ŵi|

compared to those further back in time, which amounts to a shortening of the filter’s

effective averaging length. Phase noise θ(k) becomes less correlated with θ(k − l) as

l or laser linewidth increases. Hence, samples {r(l)} further back in time carry less

useful information about the phase noise in sample r(k + 1) and are weighted less in

forming V (k+ 1). Additionally, increasing γb reduces the interval over which additive

noise smoothing needs to be performed. However, regardless of the variation in ∆νTb

and γb, the phase of the filter weights remain the same.
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Figure 3.3: Adaptation of steady-state filter weights to different γb, ∆νTb, and
∆fT . (a) Different γb and ∆νTb, at ∆fT = 8 × 10−2. (b) Different ∆νTb and
∆fT , at γb = 11.53 dB.

Next, the ∆νTb and ∆fT are varied, while the γb is kept constant at 11.53 dB, in

Fig. 3.3(b). Regardless of the variation in ∆fT , for a given ∆νTb, the magnitude of

the filter weights remain the same. However, the phase of the filter weights converges

to the pattern of 2π[∆fT, 2∆fT, . . . , L∆fT ] depending on the frequency offset

present, as expected. We can conclude from Fig. 3.3 that the magnitude of the weight,

|ŵi|, responds to ∆νTb and γb in weighting down less-relevant samples, whereas the

phase of the weight, arg(ŵi), responds to ∆fT in correcting for the frequency offset.

Hence, given convergence of arg(ŵi) to 2π∆fT i, the optimum filter length is only

dependent upon ∆νTb and γb.
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3.1.5 Optimum Filter Length
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Figure 3.4: SNR per bit penalty of CW-DA-ML at BER = 10−3 versus ∆νTb
and filter length for (a) QPSK, (b) 8-QAM, (c) 8-PSK, (d) 16-QAM, (e) 16-Star,
and (f) 16-PSK.

In general, there is a trade-off between the need for long filter lengths to aver-

age over AWGN and the need for short filter lengths to average over phase noise.

Contour plots of γb penalty at BER = 10−3 on a ∆νTb versus filter length map are

drawn in Fig. 3.4 for CW-DA-ML. The contour plots confirm that the optimum filter

length decreases with ∆νTb and there is a minimum filter length even in the absence of

phase noise. For comprehensiveness, we provide the contour plots of MPE in Fig. 3.5.

Optimum filter lengths at a 1-dB γb penalty for CW-DA-ML and MPE are given in Ta-

ble 3.2. These optimum filter lengths are used for all ensuing analyses in this chapter.

For comparison purposes, the optimum filter length of CW-DA-ML will also be used
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3.1 CW-DA-ML Estimator

for DA-ML in all subsequent analyses in this chapter.
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Figure 3.5: SNR per bit penalty of DiffFE-MPE at BER = 10−3 versus ∆νTb
and filter length for (a) QPSK, (b) 8-PSK, (c) 16-QAM, and (d) 16-PSK.

Table 3.2: Optimal filter length for 1-dB γb penalty at BER = 10−3

Format MPE CW-DA-ML

QPSK 15 15

8-QAM - 9

8-PSK 24 18

16-QAM 24 12

16-Star - 9

16-PSK 36 21
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3.2 Performance Analysis

The CW-DA-ML is compared with FFTFE-MPE and DiffFE-MPE in terms of: (i)

laser linewidth tolerance, (ii) frequency offset estimation range, (iii) acquisition time,

accuracy, and SNR threshold, and (iv) cycle slip probability.

3.2.1 Laser Linewidth Tolerance
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Figure 3.6: Laser linewidth tolerance of carrier estimators for (a) 4-, (b) 8-, and
(c) 16-point constellations.

The SNR per bit penalty versus linewidth per bit rate for CW-DA-ML is plotted in

Fig. 3.6. Here, without loss of generality, we set ∆f = 0. The tolerable ∆νTb values

for a 1-dB γb penalty at BER of 10−3 are summarized in Table 3.3. Sorted in order

of decreasing ∆νTb tolerance, we have 4-PSK, 8-QAM, 16-Star, 16-QAM, 8-PSK,

and 16-PSK. It is interesting to note that 16-QAM achieves similar ∆νTb tolerance as
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3.2 Performance Analysis

Table 3.3: ∆νTb tolerance for 1-dB γb penalty at BER = 10−3

Format MPE DA-ML CW-DA-ML

QPSK 9.0× 10−5 8.8× 10−5 9.0× 10−5

8-QAM - 5.8× 10−5 5.8× 10−5

8-PSK 5.3× 10−6 5.8× 10−6 6.5× 10−6

16-QAM 8.0× 10−6 7.7× 10−6 8.0× 10−6

16-Star - 2.0× 10−5 2.0× 10−5

16-PSK 6.5× 10−7 9.0× 10−7 1.1× 10−6

8-PSK and yet occupies 1/12Tb less spectral width. As argued extensively in [100], 16-

Star (φmin = π/4) has greater ∆νTb tolerance than 16-QAM (φmin = 0.20π & π/2)

by virtue of its larger φmin. Since 16-Star (dmin = 0.534) has poorer packing density

than 16-QAM (dmin = 0.632), it generally requires higher γb and thus only attractive

for ∆νTb ≥ 2.75×10−5 as depicted in Fig. 3.7. Similar conclusion holds for other 16-

point ring constellations considered in [101] which offer moderate advantage in terms

of ∆νTb tolerance but at the expense of poor packing density, increased transmitter

complexity, and differential encoding complexity, compared to 16-QAM.
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Figure 3.7: Laser linewidth tolerance of 16-QAM and 16-Star, using CW-DA-
ML. Here, ∆f = 0.

From Fig. 3.6 and Table 3.3, it is seen that CW-DA-ML equals or outperforms

DA-ML in terms of ∆νTb tolerance, even when ∆f = 0. This is because DA-ML
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3.2 Performance Analysis

weighs all filter inputs equally, i.e., w(k) = [1, 1, . . . , 1]T , but CW-DA-ML weighs

the samples in a decaying manner resulting in a better phase estimate. Although MPE

has an inherent advantage of using both past and future samples (i.e., noncausal), CW-

DA-ML which only uses past samples (i.e., causal) still matches MPE’s performance

in QPSK and 16-QAM, whereas outperforms MPE in 8- and 16-PSK.

3.2.2 Frequency Offset Tolerance
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Figure 3.8: Frequency offset tolerance of carrier estimators for (a) 4-, (b) 8-, and
(c) 16-point constellations.

Fig. 3.8 shows the frequency-offset-per-symbol-rate estimation range of MPE,
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DA-ML, FFTFE-MPE, DiffFE-MPE, and CW-DA-ML, while keeping ∆ν = 0. The

maximum tolerable ∆fT by MPE, with filter length L, is limited by the arg(·)/M

operation to ±1/2LM in the absence of phase noise and AWGN. The limited ∆fT

tolerance of MPE and DA-ML at 1-dB γb penalty, as summarized in Table 3.4, reit-

erates the need to incorporate a dedicated frequency offset estimation capability into

carrier estimators. MPE and DA-ML are only suitable for ∆fT ≤ ±2.1 × 10−3.

Frequency offset intolerance of MPE and DA-ML originates from the violation of the

assumption that all their filter-input terms have identical angular frequency offsets.

Table 3.4: ∆fT tolerance for 1-dB γb penalty at BER = 10−3 and ∆ν = 0

Format MPE DA-ML
FFTFE-

MPE
DiffFE-

MPE
CW-DA-ML

QPSK ±2.0× 10−3 ±1.5× 10−3 ±1/8 ±1/8 ±1/2

8-QAM - ±2.1× 10−3 - - ±1/2

8-PSK ±0.4× 10−3 ±0.4× 10−3 ±1/16 ±1/16 ±1/2

16-QAM ±6.5× 10−4 ±0.7× 10−3 ±1/8 ±1/8 ±1/2

16-Star - ±1.4× 10−3 - - ±1/2

16-PSK ±1.5× 10−4 ±0.2× 10−3 ±1/32 ±1/32 ±1/2

FFTFE and DiffFE raises the received samples to their M th power in MPSK for-

mat and to the 4th power in 16-QAM format to remove the information-bearing phase.

This limits their ∆fT estimation range to a format-dependent ±1/2M and ±1/8 in

MPSK and 16-QAM, respectively. On the other hand, CW-DA-ML achieves a com-

plete ∆fT estimation range of±1/2, as it uses reference phasor with a complete phase

tracking range of [0, 2π). FFTFE, DiffFE, and MPE need to be modified separately

according to the constellation used, rendering them less attractive in flexible optical

systems using multiple modulation formats. Moreover, FFTFE, DiffFE, and MPE are

limited to MPSK and 16-QAM formats, in contrast to the format-independent CW-

DA-ML.
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3.2.3 Acquisition Time, Accuracy, and SNR Threshold

The performance of carrier estimators is determined by the total phase error and not

by the error in individual phase and frequency estimates. Fig. 3.9 plots the total-phase-

error variance against the received sample size N used to compute the frequency esti-

mate. Here, the true ∆fT = 0.1. For CW-DA-ML, N represents the received samples

over which ŵ is updated. The error variance at each sample size N is obtained as

σ2
ε = (1/l)

∑l
i=1

∣∣∣ϑi(N)− ϑ̂i(N)
∣∣∣2 by averaging over l = 900 independent realiza-

tions. Here, ϑi(N) = arg(ri(N)) is the total phase of the N th received sample in

the ith realization and ϑ̂i(N) is the corresponding estimate. To comprehensively study

the frequency acquisition time and accuracy of each carrier estimator (FFTFE-MPE,

DiffFE-MPE, CW-DA-ML), 3 different scenarios are simulated for each modulation

format (QPSK, 8-QAM, 16-QAM) in Fig. 3.9 as follows:

1. Error variance is plotted for a 1-dB penalty at BER = 10−3, using: γb = 7.82
dB and ∆νTb = 9.0× 10−5 for QPSK; γb = 10.04 dB and ∆νTb = 5.8× 10−5

for 8-QAM; γb = 11.53 dB and ∆νTb = 8.0× 10−6 for 16-QAM.

2. Scenario 1 is repeated with γb reduced by 3 dB.

3. Scenario 1 is repeated with ∆νTb reduced by an order of magnitude.

The error variance decreases initially withN due to improving frequency estimate

accuracy but reaches an error floor limited by AWGN and laser phase noise. The carrier

acquisition time, defined as the N required for σ2
ε to reach within 3% of the error floor,

is summarized in Table 3.5. CW-DA-ML is 2.5 and 10.5 times faster than DiffFE-MPE

in QPSK and 16-QAM, respectively, for a 1-dB γb penalty at a BER of 10−3. This can

be ascribed to the fast-converging least-squares technique of CW-DA-ML [52]. Addi-

tionally, CW-DA-ML uses all N samples for frequency estimation in 16-QAM unlike

DiffFE-MPE which only uses N/2 samples as the probability of a pair of consecutive

Class I symbols is 1/4. Although FFTFE has the shortest frequency-acquisition time,

we shall later see that it is undesirable for reasons described in Section 3.2.4. Notably,
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Figure 3.9: Frequency acquisition time and accuracy of FFTFE-MPE, DiffFE-
MPE, and CW-DA-ML for (a) QPSK, (b) 8-QAM, and (c) 16-QAM.
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Table 3.5: Carrier acquisition time

Format
SNR

per bit,
γb (dB)

Linewidth/
Bit rate,
∆νTb

Sample size, N

FFTFE-
MPE

DiffFE-
MPE

CW-DA-ML

QPSK

4.82 9.0× 10−5 165 30×103 5× 103

7.82 9.0× 10−5 45 10×103 4× 103

7.82 9.0× 10−6 45 15×103 6× 103

8-QAM

7.04 5.8× 10−5 - - 4× 103

10.04 5.8× 10−5 - - 3× 103

10.04 5.8× 10−6 - - 4× 103

16-QAM

8.53 8.0× 10−6 528 58×103 5× 103

11.53 8.0× 10−6 360 42×103 4× 103

11.53 8.0× 10−7 360 54×103 5× 103

the variation in frequency acquisition time with different modulation formats is much

smaller in CW-DA-ML than in FFTFE and DiffFE, thanks to CW-DA-ML’s format

independence.

Lowering the SNR (∆νTb) increases (decreases) the error floor, as expected. With

the decrease in SNR, speed of CW-DA-ML over DiffFE-MPE increased to 6 and 11.6

times in QPSK and 16-QAM, respectively. The convergence time decreases with SNR

and ∆νTb, hence a smaller sample size N is sufficient at higher SNR or higher ∆νTb.

An exception to this is FFTFE, whose convergence time remains unchanged with vari-

ation in ∆νTb. This is because the peak position in the FFT spectrum, and thus its

frequency estimate accuracy, remains unaffected as variation in ∆νTb merely alters

the spectral width around the peak.

The dashed line in Fig. 3.9 for each modulation format, depicts the theoretical

error variance of DA-ML at ∆f = 0 computed using [102]

σ2
ε,DA-ML ≈

2L2 + 3L+ 1

6L
σ2
p +

1

2Lγb log2M
(3.12)
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3.2 Performance Analysis

for test scenario 1. A value of L = 15, 9, and 12 was used in Eq. (3.12) for QPSK,

8-QAM, and 16-QAM format, respectively. A similar error floor achieved by CW-

DA-ML demonstrates the near-ideal frequency estimation by our estimator. Equa-

tion (3.12) can thus be used as a quick approximation of the error floor achievable by

CW-DA-ML.

Fig. 3.10 illustrates the error variance versus γb of FFTFE-MPE, DiffFE-MPE,

and CW-DA-ML in QPSK, 8-QAM, and 16-QAM using different values of N and

a ∆fT of 0.1. CW-DA-ML achieves superior or equal frequency estimation accu-

racy compared to DiffFE-MPE at any given N and γb. This can be attributed to the

L-sample lag autocorrelation used in CW-DA-ML [see Eq. (3.7)] which is more re-

silient to AWGN compared to the 1-sample lag autocorrelation used in DiffFE. CW-

DA-ML tends to outperform FFTFE-MPE, and is therefore a better option, at low SNR

and/or low N . Low SNR increases the occurrence of outliers and low N reduces the

frequency-estimate resolution of FFTFE. Furthermore, CW-DA-ML does not exhibit

sharp SNR threshold but rather a gradual deterioration of error variance with decreas-

ing SNR. As the error variance is a decreasing function of N , CW-DA-ML can operate

at low SNR by adequately increasing N .

3.2.4 Continuous versus Periodic Tracking

In FFTFE and DiffFE, the frequency estimate becomes available only at the N th time

point. Hence, the first N received samples need to be frequency-corrected retrospec-

tively at time pointN , resulting in a huge processing bottleneck. Alternatively, the first

N samples may be treated as a training sequence at the expense of a large overhead.

For example, from Table 3.5, N = 360 and 42 × 103 in 16-QAM for FFTFE-MPE

and DiffFE-MPE, respectively. In contrast, CW-DA-ML requires merely 2L samples

as preamble sequence [103] and thus has a smaller overhead, e.g., 24 samples in 16-
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Figure 3.10: Error variance versus γb with different sample size N for frequency
estimation in (a) QPSK, (b) 8-QAM, and (c) 16-QAM.
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QAM with L = 12.

In practice, the frequency offset varies with time and needs to be tracked. How-

ever, FFTFE-MPE and DiffFE-MPE can only produce periodically-updated static fre-

quency estimates, and is likely to incur some penalty as a result. Moreover, they will

incur a large processing bottleneck or a large overhead each time the frequency is re-

estimated. It is desirable to track the time-varying frequency offset continuously, such

as the symbol-by-symbol CW-DA-ML estimator, to ensure best performance.

3.2.5 Cycle Slip Probability

When AWGN, phase noise, and/or frequency offset pushes the carrier estimate from

the true stable operating point into the domain of attraction of a neighboring stable

operating point, a cycle slip is said to have occurred. The estimate remains in the

vicinity of the new stable operating point, causing a large error burst, until another

cycle slip occurs. Angular spacing of the stable operating points ϕ concur with that of

the rotationally symmetric positions of the constellation. We have ϕ equal to 2π/M in

MPSK, π/4 in 16-Star, and π/2 in 8- and 16-QAM constellations.

The highly nonlinear phenomenon of cycle slip, and resulting error burst, can be

confined to the slip duration by using differential encoding [104]. However, differential

encoding is undesirable for it increases the BER through correlated errors and hinders

the use of powerful soft decision (SD) forward error correction (FEC) codes with high

coding gain [105]. Alternatively, cycle slip can be mitigated by inserting pilot symbols

at a frequency greater than the cycle slip probability. In PA system, a low cycle slip

probability is preferred to minimize the required pilot overhead. Detection of cycle

slip follows the technique in [106], where 11 or more consecutive symbol errors are

assumed to be due to a cycle slip.

A cycle slip of π/2 and π/8 by CW-DA-ML in 16-QAM and 16-PSK signals,
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Figure 3.11: Cycle slip in CW-DA-ML for (a) 16-QAM, and (b) 16-PSK signals.

respectively, are shown in Fig. 3.11, where ∆f = 0 for better visualization. It is key

to note that the cycle slip in 16-QAM transitioned through an intermediate state of

0.20π rotation before settling at the stable point spaced away by π/2. An example

of this trajectory could be from the domain of point s9 to s2 to s1 of the 16-QAM

constellation shown in Fig. 2.1(d).
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Figure 3.12: Cycle slip probability of CW-DA-ML and DiffFE-MPE for QPSK
signal versus (a) ∆νTb, and (b) γb.

The cycle slip probability of DiffFE-MPE and CW-DA-ML for QPSK signal is

plotted against ∆νTb in Fig. 3.12(a) and against γb in Fig. 3.12(b). The γb is fixed

at 1 dB above its theoretical value for BER = 10−3 in Fig. 3.12(a), and the ∆νTb is

fixed at 9 × 10−5 in Fig. 3.12(b). The cycle slip probability is an increasing function
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of laser phase noise and a decreasing function of SNR. CW-DA-ML has a lower cycle

slip probability than DiffFE-MPE. For example, at γb = 7.82 dB and ∆νTb = 9 ×

10−5, CW-DA-ML achieves a lower cycle slip probability of 2 × 10−8 compared to

the 8 × 10−8 of DiffFE-MPE. Cycle slip is induced in CW-DA-ML by the use of

erroneous symbol decisions when forming the reference phasor in Eq. (3.1). However,

cycle slip in DiffFE-MPE is caused by inaccurate phase unwrapping in MPE. Due to

MPE’s modulo 2π/q operation, its phase estimate θ̂(k) needs to be unwrapped to track

the true laser phase noise trajectory. The unwrap function selects θ̂(k)± 2πi/q where

i ∈ {0, 1, 2, . . .}, such that θ̂(k)− θ̂(k−1) is within±π/q. However, if the true |θ(k)−

θ(k − 1)| was greater than π/q, a cycle slip will occur. Increased ∆νTb and reduced

SNR makes accurate phase unwrapping difficult, and contributes to unwrapping errors

as witnessed in Fig. 3.12.
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Figure 3.13: Cycle slip probability of DiffFE-MPE versus ∆νTb.

Besides SNR and ∆νTb, the size of the basic unwrapping interval also contributes

to the cycle slip probability. In Fig. 3.13, the cycle slip probability of DiffFE-MPE

for 4-, 8-, and 16-PSK signals are plotted at 1 dB above their respective theoretical γb

values for BER = 10−3. As M increases at a given ∆νTb, it is more likely for the true

|θ(k)− θ(k − 1)| to exceed π/q, thus increasing the cycle slip probability. Moreover,
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introduction of higher powers of noise with modulation order M by MPE [95] com-

pounds the angular uncertainty of the received sample, making cycle slips more likely.

Therefore, MPE based carrier estimators, such as DiffFE-MPE and FFTFE-MPE, are

less desirable in practical PA systems than CW-DA-ML due to their higher cycle slip

probability.
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Figure 3.14: Cycle slip probability of different modulation formats versus ∆νTb.

Suitability of various modulation formats in terms of cycle slip probability is in-

vestigated in Fig. 3.14 using CW-DA-ML. Each modulation format was simulated at 1

dB above its theoretical γb value for BER = 10−3. Sorted in order of increasing cycle

slip probability, we have QPSK (ϕ = π/2), 8-QAM (ϕ = π/2), 16-Star (ϕ = π/4),

8-PSK (ϕ = π/4), 16-QAM (ϕ = π/2), and 16-PSK (ϕ = π/8). This order follows

the pattern of constellations with larger angular separation of stable operating points ϕ

having a lower cycle slip probability, with the exception of 16-QAM. The irregularity

can be explained by recalling that cycle slip in 16-QAM tends to occur through an

intermediate state spaced apart by 0.20π which is smaller than ϕ = π/4 of 8-PSK.

Hence, it is more likely for 16-QAM to incur cycle slips compared to 8-PSK. In terms

of cycle slip tolerance, best 4-, 8-, and 16-point constellations are 4-PSK, 8-QAM, and

16-Star, respectively. However, we should remember that a higher SNR and a more

58



3.3 Pilot-Assisted Carrier Estimation

complex transmitter is required for 16-Star than 16-QAM.

3.3 Pilot-Assisted Carrier Estimation

Cycle slips can be combated using differential encoding or pilot symbols. PA carrier

estimation is preferred in practice for it avoids the differential encoding penalty listed

in Table 2.1, enables the use of powerful SD FEC codes with high coding gain, and can

be simultaneously used for fiber nonlinearity compensation. In PA carrier estimation,

alternating D-symbol-long data and P -symbol-long pilot sequences are transmitted.

When data are transmitted in packet frames, headers containing protocols such as the

physical addresses of the receiver and FEC information can be used as pilot symbols.

The additional energy of pilot symbols is accounted for in our simulation by computing

the effective launched energy of each symbol Es,eff as Es,eff = Es,act · (D + P )/D.

Here, Es,act is the actual energy of each transmitted symbol.

Fig. 3.15 shows the γb penalty of PA CW-DA-ML at BER = 10−3 with different

overhead costs, defined as P/(D + P ). As the ratio (D + P )/D decreases toward

1, the Es,act approaches Es,eff , hence the receiver sensitivity improves. In Fig. 3.15,

the ∆νTb is set at the tolerance value for a 1-dB γb penalty in a differential-encoding

system as listed in Table 3.3. Therefore, the PA system with D = 104 and P = 20,

achieves a gain of 0.57, 0.30, and 0.13 dB in QPSK, 8-QAM, and 16-QAM, respec-

tively, over its differential-encoding counterpart, while keeping the overhead cost low

at 0.2%.

In Fig. 3.15, the improvement in receiver sensitivity levels off for D ≥ 104, indi-

cating negligible error propagation arising from a low cycle slip probability. We can

infer that the mean time to lose lock (i.e., cycle slip) is greater than 105 symbols. This

is proven in Fig. 3.16 by the negligible performance loss with actual, compared to

ideal, decision feedback for BER ≤ 10−3 at D = 105 and P = 20.
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Figure 3.15: SNR per bit penalty versus data length D, at different pilot lengths
P , for (a) QPSK, (b) 8-QAM, and (c) 16-QAM. Here, ∆fT = 0.1.
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Figure 3.16: BER performance of PA CW-DA-ML with ideal and actual decision
feedback. Here, ∆fT = 0.1.
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3.4 Time-Varying Frequency Offset

3.4 Time-Varying Frequency Offset

In practice, the frequency of the laser drifts over time in the MHz/s range due to ag-

ing or temperature variation and can also experience sudden jumps due to mechanical

disturbances or vibrations to the laser cavity [107]. Hence, the frequency offset needs

to be continuously tracked for best BER performance in a symbol-by-symbol receiver.

Fig. 3.17 evaluates the robustness of PA CW-DA-ML in a time-varying frequency off-

set environment. A 14-Gbaud 16-QAM signal with γb = 12 dB, ∆νTb = 8 × 10−6,

and training overhead of 0.2% (D = 104, P = 20) was used. The stable BER about

4.7×10−4, measured at 10 ms intervals, demonstrates the reliable tracking of frequency

offset experiencing a continuous drift of 10 MHz/s and rapid jumps of 100 kHz ev-

ery 10 ms. Similarly, we showed in [108] that differentially-encoded CW-DA-ML can

track frequency drifts of up to 30 MHz/s and frequency jumps of up to 200 kHz every

10 ms, in a 28-Gbaud 16-QAM signal with γb = 13.5 dB and ∆νTb = 4.5 × 10−6.

CW-DA-ML can continuously track the frequency offset, thanks to its observation de-

pendent filter weight ŵ(k) and negligible error propagation.
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Figure 3.17: BER performance of PA CW-DA-ML in time-varying frequency
offset experiencing (a) continuous drift, and (b) rapid jumps.
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3.5 ADC Resolution

3.5 ADC Resolution

In coherent receivers, the real and imaginary dimensions of each polarization are sam-

pled and quantized to a discrete set of values by ADCs, whose resolution is determined

in number of bits b. In general, ADCs with higher sampling rates are limited to lower

resolution [109]. Hence, higher quantization error is introduced in coherent systems

requiring higher sampling rates.
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Figure 3.18: ADC resolution in terms of number of bits for differentially-
encoded CW-DA-ML. Here, ∆fT = 0.1.

Impact of quantization noise by uniformly quantizing ADC on differentially-

encoded CW-DA-ML is investigated in Fig. 3.18, with a time-invariant ∆fT = 0.1.

The ∆νTb is fixed at the tolerance value for a 1-dB γb penalty, as listed in Table 3.3.

Each signal dimension is divided into 2b non-overlapping intervals of equal width dint.

Midpoint of each interval is designated as the quantization level. Received sample

component in each dimension is quantized to the nearest quantization level. The quan-

tization error can be modeled as an additive Gaussian noise with variance d2
int/12 per

dimension [72].

An ADC resolution greater than 5 bits is seen to be sufficient for all modulation
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3.6 Conclusion

formats tested. The bits requirement may be reduced by using an ADC with nonuni-

form quantization intervals, especially for constellations with nonequally spaced signal

points such as 8-QAM. Advent of complementary metal-oxide-semiconductor based

ADCs with a 6-bit resolution and a sampling rate of 24 Gs/s, commensurate with

current line rates, enables the practical implementation of our CW-DA-ML [110].

3.6 Conclusion

Considering the ease of transmitter implementation, differential encoding, tolerance to

AWGN, phase noise, frequency offset, and cycle slips, we identify QPSK, 8-QAM,

and 16-QAM as the most viable 4-, 8-, and 16-point constellations for coherent optical

communications.

Our causal CW-DA-ML achieves a near-ideal frequency offset estimation over a

complete ∆fT range of [−1/2,+1/2) and avoids phase unwrapping as it uses a ref-

erence phasor with an unambiguous phase tracking range of [0, 2π). The initial decay

of CW-DA-ML’s total-phase-error variance σ2
ε follows the Cramer-Rao lower bound

(CRLB) [111]1 closely compared to DiffFE-MPE, reiterating the faster frequency ac-

quisition by CW-DA-ML compared to DiffFE based estimators [108].

Having lower cycle slip probability than MPE based estimators, continuous car-

rier tracking feature, low training overhead, ability to operate at low SNR region, and

being modulation-format independent, makes CW-DA-ML an attractive carrier estima-

tor for flexible multi-modulation coherent receivers with laser frequency instabilities.

1The CRLB in [111] is derived for joint estimation of a constant phase and frequency offset. Hence,
the CRLB of [111] continuously decreases with N .
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Chapter 4

Adaptive Complex-Weighted
Decision-Aided Phase and Frequency
Estimation

Early optical networking systems provided point-to-point WDM transmission. The

WDM channels propagated over predetermined optical path between fixed transmitter-

receiver pairs, with preset symbol rate and modulation format. These point-to-point

systems then evolved into optical mesh topologies using WDM and reconfigurable

optical add/drop multiplexers, developed to minimize optical-electrical-optical wave-

length regeneration and grooming costs at intermediate nodes [112]. Later, optical

packet switching (OPS) offering sub-wavelength switching granularity emerged, driven

by the desire for rapidly reconfigurable circuits and effective accommodation of bursty

traffic [113]. Unlike early WDM systems, packets can be dynamically routed over

different optical paths depending on link status (e.g., link availability and delay), thus

experiencing different link impairments. Moreover, with no fixed transmitter-receiver

pairs, a given receiver may receive packets from different transmitters. Currently, elas-

tic optical networks [114] and software defined networks [115] have been touted as

solutions for enhanced spectral efficiency and optimized network resource utilization.

These architectures require transceivers with tunable modulation format and symbol
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4 Adaptive Complex-Weighted Decision-Aided Phase and Frequency Estimation

rate to support trade-offs among optical reach, bit rate, and spectral occupancy [116]. A

continuous trade-off between optical reach and spectral efficiency was demonstrated by

time-domain interleaving of different MPSK and MQAM signals [117,118]. Recently,

flexible modulation format and bit rate depending on light-path length was shown to

reduce queuing delay in OPS networks [119].

Considering the above progress toward a fully reconfigurable optical network, the

carrier estimators in intradyne coherent receivers are expected to receive (i) dynamic

data with different SNR values and nonlinear phase noise due to variable link impair-

ments, (ii) different laser phase noise and frequency offsets due to variable transmitter-

receiver laser pairs, (iii) different modulation formats, and (iv) different symbol rates;

and yet be computationally simple for feasible implementation. Popular phase esti-

mators, namely, MPE [89, 92] and BPS [51], utilize fixed-length transversal filters.

However, their optimum filter length with respect to BER depends on the parameter

set of SNR, linewidth-per-symbol-rate ∆νT , nonlinear phase noise, and modulation

format [51,120,121]. Difficult numerical optimization and manual adjustment of filter

length are needed for each set of parameters [51, 120, 121], which is not practical in a

reconfigurable optical network. Although the optimum filter length for MPE may be

computed using [122]

Lopt,MPE =

√
3
σ2
n(1 + 4.5× σ2

n)

σ2
p

− 1, (4.1)

it is only applicable to QPSK format, requires linear laser phase noise and additive

noise statistics, does not consider nonlinear phase noise, and still requires manual filter

adjustment; all of which are not practical in reconfigurable networks. Besides degrad-

ing the BER, a poor choice of filter length directly affects the complexity of the carrier

estimator. An unnecessarily long filter length increases the required number of adders

and multipliers for filtering. Moreover, given that MPE and DiffFE are not format

transparent, several format-adapted MPE modules and format-adapted DiffFE mod-
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4.1 Principle of Operation

ules are required to support multiple formats, which increases the receiver hardware.

Previously, a CW-DA-ML estimator with a fixed-length filter was derived in Chap-

ter 3. To avoid the manual filter-length optimization of CW-DA-ML, we develop an

adaptive CW-DA estimator with an adaptive filter length in this chapter, following the

idea in [123]. Performance of adaptive CW-DA in linear and nonlinear impairments

are benchmarked against DiffFE-MPE, DiffFE-BPS, and CW-DA-ML. DiffFE-BPS

refers to the operation of DiffFE [87, 88] followed by BPS [51]. In BPS, we set the

number of test phases β to 32, following [51]. Finally, a comprehensive complexity

analysis of all carrier estimators discussed is presented.

4.1 Principle of Operation

In CW-DA-ML [124], the reference phasor V (k + 1) for the carrier at time k + 1 is

computed by Eq. (3.1) using a transversal filter of length L, which can be rewritten as

V (k + 1) = C(k)
L∑
i=1

wi(k)r(k − i+ 1)m̂∗(k − i+ 1) (4.2)

where wi(k) is the ith complex scalar filter weight.

To avoid specifying a filter length L, we propose to replace Eq. (4.2) with a new

complex reference phasor V̄ (k + 1) formed by a first-order recursion as

V̄ (k + 1) = w1V̄ (k) + w2
r(k)

m̂(k)
, k ≥ 0. (4.3)

The new phasor V̄ (k+1) for demodulating the (k+1)th symbol is a complex-weighted

sum of the previous phasor V̄ (k) and the current filter input r(k)/m̂(k). No normal-

ization factor is required as the filter input r(k)/m̂(k) is normalized, unlike the need of

a normalization factor C(k) in Eq. (3.1) for CW-DA-ML. Our new adaptive CW-DA

estimator is applicable to both MPSK and MQAM signals due to the decision-aided ap-

proach of Eq. (4.3). Let x(k) = r(k)/m̂(k). If m̂(k) = m(k), then x(k) approximates
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4.1 Principle of Operation

the carrier at time k. Using x(k) as the desired response, we define the estimation

error as the difference between x(k) and V̄ (k). At time k = 0, we initialize V̄ (0) = 1,

w1 = 0, and w2 = 1, to give the maximum gain of one to the first received signal

r(0)/m̂(0). Subsequently, filter weights in Eq. (4.3) are recomputed automatically at

each time k ≥ 1 based on the observations {r(l), 0 ≤ l ≤ k} so as to minimize the

sum-of-error-squares cost function J(k), where

J(k) =
k∑
l=1

∣∣x(l)− V̄ (l)
∣∣2. (4.4)

In Eq. (4.4), V̄ (l) is expressed in terms of Eq. (4.3). Solving ∂J(k)/∂w∗ = 0, where

w = [w1, w2]T , yields the least-squares optimum weight vector ŵ at time k as

ŵ = Φ−1z (4.5)

Φ =
k∑
l=1

 ∣∣V̄ (l − 1)
∣∣2 V̄ ∗(l − 1)x(l − 1)

x∗(l − 1)V̄ (l − 1) |x(l − 1)|2

 (4.6)

z =
k∑
l=1

x(l)

V̄ ∗(l − 1)

x∗(l − 1)

 (4.7)

where Φ is a 2-by-2 matrix and z is a 2-by-1 vector. The detailed derivation of ŵ is

given in Appendix D. The structure of adaptive CW-DA estimator is shown in Fig. 4.1.

Compute 

filter 

weights

Symbol 

detector

Preamble 

sequence,

Figure 4.1: Adaptive CW-DA estimator.

67



4.2 Adaptation of Effective Filter Length

An initial preamble of K known symbols {m(k)}K−1
k=0 is used to aid in acquiring

the steady-state filter weights and tracking of the phasor ej(θ(k)+∆ωk). Thereafter, the

adaptive CW-DA estimator switches to using the actual symbol decisions, {m̂(k)}k≥K .

4.2 Adaptation of Effective Filter Length
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Figure 4.2: Adaptation of the (a) magnitude of weights, |ŵi|, and (b) phase of
weights, arg (ŵi). Inset shows enlarged time 0 ≤ k ≤ 40.

Fig. 4.2 plots the automatic filter weight adaptation of adaptive CW-DA estimator
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4.2 Adaptation of Effective Filter Length

at different values of SNR and laser linewidth, averaged over 500 runs, for 28-Gbaud

16-QAM signals. Simulation runs in Fig. 4.2(a) show the gain |ŵ1| on the filter input

V̄ (k) increasing from 0 while the gain |ŵ2| on r(k)/m̂(k) decreases from 1, to a steady-

state value between 0 and 1 as k increases. The large initial gain |ŵ2| helps in carrier

acquisition, while the smaller steady-state gain |ŵ2| is suitable for tracking the carrier.

Magnitude of V̄ (l) must approximate 1 to minimize the sum of error squares in

Eq. (4.4) since the magnitude of x(l) is ∼1. For this condition to be satisfied, the

magnitude sum of the filter weights must equal 1 by virtue of Eq. (4.3). Indeed, the

steady-state |ŵ1| + |ŵ2| always equal to ∼1 in Fig. 4.2(a). Given the recursive nature

of Eq. (4.3) and the sum |ŵ1|+ |ŵ2| ∼= 1, the filter input samples x(l) will be summed

in a decaying manner by Eq. (4.3). Thus, |ŵ1| is a measure of the effective filter

length of our recursive filter. From Fig. 4.2(a), we see that the effective filter length

represented by |ŵ1| decreases with the SNR and laser linewidth. As SNR goes to

infinity, the steady-state |ŵ1| goes to zero, and the receiver employing the adaptive

CW-DA algorithm approaches a differential detector.

The phasor V̄ (l) must have an angular frequency offset approximating ∆ωl to

minimize Eq. (4.4) since angular frequency offset of x(l) is ∼∆ωl. For this condition

to be satisfied, the phase of ŵ1 and ŵ2 should be ∼2π∆fT by virtue of Eq. (4.3).

Indeed, the phase of ŵ1 and ŵ2 always converge to the actual 2π∆fT value of 0.2π rad

in Fig. 4.2(b) regardless of SNR and ∆νT . Results of Fig. 4.2 show that the magnitude

of the filter weights control the effective sample averaging length depending on SNR

and ∆νT , while the phase of the filter weights help track the angular frequency offset

of the carrier.

Fig. 4.3 shows the BER performance of CW-DA-ML for QPSK and 16-QAM sig-

nals. The value (LT )−1 is a measure of an estimator’s bandwidth. The optimum value

of L found by an exhaustive search is larger at low SNR and smaller at high SNR.

Narrower bandwidth is beneficial at lower SNR to filter the dominant ASE noise and
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4.3 Performance in Presence of Linear Phase Noise
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Figure 4.3: BER performance of adaptive CW-DA estimator. Here, ∆fT = 0.1

wider bandwidth is beneficial at higher SNR to track the dominant laser phase noise.

On the flip side, adaptive CW-DA estimator always minimizes the BER by automati-

cally adapting its effective filter length according to the SNR, ∆νT , and modulation

format. Performance loss of actual, compared to ideal, decision feedback is minimal

for the tested SNR range.

The adaptive CW-DA estimator not only inherits the merits of CW-DA-ML (e.g.,

no phase unwrapping, modulation-format independent), but also requires no preset

parameters such as filter length L, since the knowledge of phase noise and additive

noise is learned adaptively based on the observed signal. These characteristics render

the adaptive CW-DA estimator practically useful in a realistic, unknown environment.

4.3 Performance in Presence of Linear Phase Noise

The ∆νT tolerance, ∆fT tolerance, and cycle slip probability in linear phase noise

are investigated via simulation. Furthermore, filter-length optimization is shown to be

crucial as it affects the cycle slip probability besides the BER performance.
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4.3 Performance in Presence of Linear Phase Noise

4.3.1 Laser Linewidth and Frequency Offset Tolerance
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Figure 4.4: (a) Laser linewidth tolerance, with ∆fT = 0.1. (b) Frequency offset
tolerance, with ∆νT = 7× 10−5.

Fig. 4.4 compares the laser linewidth and frequency offset tolerance of carrier

estimators at a BER of 10−3 for QPSK signals. The γb penalty is referenced to that of

ideal coherent detection. The filter length L in MPE, BPS, and CW-DA-ML is set to

15, 19, and 15, respectively, which are numerically optimized for a 1-dB γb penalty at

BER of 10−3 [124]. For a 1-dB penalty, adaptive CW-DA estimator accommodates a

∆νT of 1.8× 10−4 which is comparable to that of MPE and CW-DA-ML, but slightly

smaller than the tolerance of BPS. As for the ∆fT estimation range, DiffFE is limited

to ±1/8 for the reasons established earlier in Section 3.2.2. However, adaptive CW-

DA estimator attains a complete ∆fT estimation range of ±1/2, as the phasor V̄ (k)

has an unambiguous phase tracking range of [0, 2π).
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4.3 Performance in Presence of Linear Phase Noise

4.3.2 Cycle Slip Probability

For an error-free optical communication, the optical reach without regeneration is lim-

ited by SNR. FEC is now widely adopted as a standard technique for increasing the

optical reach or lowering the SNR requirement [125]. In general, FEC codes are not

designed for burst errors and correlated errors, which if encountered can tighten the

BER threshold of the code [126].

Cycle slips are inherent in MPE, BPS, CW-DA-ML, and adaptive CW-DA esti-

mator. Pilot symbols can be used to mitigate cycle slips, but errors due to cycle slips

will persist until the next pilot symbols arrive resulting in burst errors. For successful

FEC decoding, pilot symbols need to be inserted at a much higher frequency than the

cycle slip probability to minimize the burst error length. Therefore, a low cycle slip

probability is preferred to minimize the pilot overhead.
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Figure 4.5: Cycle slip probability versus ∆νT for different filter lengths.

The cycle slip probability is plotted in Fig. 4.5 using QPSK signals at γb = 7.82

dB. Cycle slip probability is seen to be filter-length dependent in DiffFE-MPE, DiffFE-

BPS, and CW-DA-ML. Effective tracking of laser phase noise using shorter filter

lengths at broader laser linewidths and sufficient averaging of ASE noise at narrower
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4.3 Performance in Presence of Linear Phase Noise

laser linewidths using longer filter lengths, improves the phase estimate. Improved

phase estimate reduces the cycle slip probability by reducing phase unwrapping errors

in MPE and BPS, and by reducing the symbol decision errors in CW-DA-ML. Inap-

propriate selection of filter length can be detrimental. For example, insufficient filter

length causes a cycle slip probability floor at smaller values of ∆νT in Fig. 4.5. Our

adaptive CW-DA estimator tolerates a larger or equal ∆νT compared to DiffFE-MPE,

DiffFE-BPS, and CW-DA-ML for a given cycle slip probability.

Next, we demonstrate the criticality of filter-length optimization in a differentially

encoded system employing SD FEC. Here, differential encoding is intended to arrest

cycle slips. SD FEC provides enhanced net coding gain but its benefits are impaired by

the error duplication penalty in differentially encoded systems [127]. The differential

encoding penalty was shown to be completely eliminated by turbo differential decod-

ing (TDD), i.e., turbo decoding of an outer SD low density parity check decoder and

an inner soft differential decoder [127, 128]. However, TDD is vulnerable to a quickly

rising post-FEC error floor in the presence of frequent cycle slips [128].

Fig. 4.6 plots the required SNR for QPSK signals with a target BER of 2.5 ×
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Figure 4.6: Required SNR and corresponding cycle slip probability at BER =
2.5× 10−2. Here, ∆νT = 3× 10−4.
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4.4 Performance in Presence of Nonlinear Phase Noise

10−2 and the corresponding cycle slip probability as a function of the filter length.

The cycle slip probability is more sensitive than the required SNR to variations in the

filter length. For example, DiffFE-BPS attains a 0.58-dB improvement in the required

SNR with filter-length optimization but achieves a 94 times reduction in cycle slip

probability. Misadjustment of filter length L in DiffFE-MPE by 4 taps from 17 to

13 causes the cycle slip probability to rise above 10−4, which would cause the TDD

post-FEC BER to saturate above 10−9 [128]. Such misadjustments can render the

carrier estimator unusable as high data integrity with BER lower than 10−9, preferably

10−12, is generally expected in optical transport systems. On the other hand, adaptive

CW-DA estimator assures the lowest cycle slip probability at 1.8 × 10−5 and a TDD

post-FEC BER of much lower than 10−9. Simultaneously, our new estimator achieves

a comparable SNR requirement to that of DiffFE-MPE and CW-DA-ML, and is a mere

0.2 dB inferior to DiffFE-BPS with optimum filter length.

4.4 Performance in Presence of Nonlinear Phase Noise

A key difference between optical fiber and other transmission media is the presence

of nonlinear effects. The dominant nonlinear impairment in fiber is the Kerr nonlin-

earity, where the refractive index of silica fiber vary with the signal power. Interaction

of signal and ASE noise with the Kerr effect generates self-phase-modulation (SPM)

induced nonlinear phase noise [129].

Assuming the use of zero-dispersion fiber spans, the accumulated nonlinear phase

noise experienced by the signal after NA EDFAs is given by [130]

θNL(k) = γLeff ·
NA∑
j=1

∣∣∣∣∣√Pt(k)ejφ(k) +

j∑
i=1

nASE,i(k)

∣∣∣∣∣
2

(4.8)

where γ is the nonlinear coupling coefficient and the quantity
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4.4 Performance in Presence of Nonlinear Phase Noise

Leff =

(
1− exp(−αLf )

α

)
(4.9)

is the effective interaction length of the fiber [54]. Hence, the input sample to the

carrier estimator now becomes

r(k) =
[
m(k)ej(θL(k)+∆ωk) + n(k)

]
ejθNL(k)

= m(k)ej(θ(k)+∆ωk) + n(k)ejθNL(k) (4.10)

where the total phase noise impairment is θ(k) = θL(k) + θNL(k).

Nonlinear phase noise impairs the performance of phase-modulated optical sys-

tems [131]. SPM effect is more pronounced in the initial length of Leff , compared to

the latter part, in a span due to the higher initial signal power [132]. Attenuation of

signal power along the fiber offsets the SPM effect after the initial length of Leff .

We consider the presence of fiber Kerr nonlinearity in the optical transmission

system illustrated in Fig. 2.3. A nominal combined laser linewidth of 200 kHz is used

and the system parameters in Table 4.1 are assumed.

Table 4.1: System parameter values used in evaluating the nonlinear phase
noise and cycle slip tolerance

Parameter Value Parameter Value Parameter Value

γ 1.2 W−1km−1 α 0.2 dB/km Lf 100 km

G 20 dB λ 1550 nm nsp 1.41

Bo 28 GHz

4.4.1 BER Performance

Fig. 4.7 analyzes the nonlinear phase noise tolerance of carrier estimators in a 28-

Gbaud QPSK signal transmission over NA = 41 spans. The launch power in dBm

of Fig. 4.7 is computed as 10 log10(Pt/1mW). The optimum filter length for DiffFE-

MPE, DiffFE-BPS, and CW-DA-ML was found to be 21, 27, and 21, respectively,
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4.4 Performance in Presence of Nonlinear Phase Noise
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Figure 4.7: BER performance of carrier estimators in nonlinear phase noise.
Here, ∆fT = 0.1.

through an exhaustive search. In contrast, our new estimator automatically adapts its

effective filter length according to the nonlinear phase noise to achieve the lower BER.

The minimum BER occurs at approximately 0 dBm launch power corresponding to a

mean nonlinear phase shift E[θNL] of 1.07 rad, which can be computed using [130]

E[θNL] = NAγLeff

[∣∣∣√Pt(k)ejφ(k)
∣∣∣2 + (NA + 1)

σ2
ASE

2

]
. (4.11)

Our result agrees well with the finding of [129] which shows the error rate of a phase-

modulated system to be minimized when the mean nonlinear phase shift E[φNL] is in

the neighborhood of 1 rad. As the launch power exceeds the optimum power, variance

of the total phase noise increases and the BER deteriorates. Adaptive CW-DA estima-

tor approximately halves the minimum achievable BER compared to DiffFE-MPE.

4.4.2 Cycle Slip Probability

In order to understand the effect of nonlinear phase noise on cycle slip probability, we

kept the SNR per bit constant at 4.47 dB in Fig. 4.7 and varied the launch power. The
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4.4 Performance in Presence of Nonlinear Phase Noise

resulting cycle slip probability is plotted in Fig. 4.8. The value of nsp was varied to

keep the SNR constant. The nonlinear phase shift increases with the launch power,

thereby increasing the cycle slip probability. A cycle slip probability floor appears

for DiffFE-MPE and DiffFE-BPS employing fixed-length filters, similar to the linear

phase noise case in Fig. 4.5. Points yielding a BER of 2.5 × 10−2 with differential

encoding are marked in Fig. 4.8 and tabulated in Table 4.2.
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Figure 4.8: Cycle slip probability of carrier estimators in nonlinear phase noise.

Table 4.2: Coordinates of points at BER = 2.5× 10−2 in Fig. 4.8

Carrier estimator Launch power (dBm) Cycle slip probability

DiffFE-MPE, L = 11 −10.0 1.0× 10−4

DiffFE-MPE, L = 21 −9.4 5.6× 10−6

DiffFE-BPS, L = 27 −5.4 5.3× 10−6

CW-DA-ML, L = 21 −5.8 3.2× 10−7

Adaptive CW-DA −5.2 2.9× 10−7

The importance of filter-length adjustment is illustrated by DiffFE-MPE using

L = 11 and L = 21. Filter-length adjustment from 11 to 21 yields a minimal 0.6-dB

improvement in launch power tolerance at a BER of 2.5×10−2, but successfully avoids
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4.5 Complexity Analysis

a TDD post-FEC error floor of 10−9 by reducing the cycle slip probability from 10−4

to 5.6×10−6. From Table 4.2, we observe that the adaptive CW-DA estimator achieves

greater nonlinear phase noise tolerance and lower cycle slip probability than the other

estimators.

4.5 Complexity Analysis

An important issue that influences the choice of an estimation algorithm is its compu-

tational complexity. Carrier estimators should have a low computational complexity

in order to be feasible for practical implementation with data rates of 100 Gb/s and

beyond. In this section we assess the computational load associated with frequency

and phase estimation algorithms described so far.

The computational complexity of CW-DA-ML and adaptive CW-DA estimator to

compute the reference phasor V (k) and V̄ (k), respectively, is analyzed in Table 4.3.

The complexity of FFTFE and DiffFE to estimate ∆ω using an observation of N sym-

bols, and the complexity of MPE and BPS to estimate θ(k) per symbol, are also pro-

vided in Table 4.3 for comparison. Assuming an equiprobable symbol distribution, the

Class I symbol probability of 1/2 is used in computing the complexity of DiffFE and

MPE, for 16-QAM signals. A complex multiplication corresponds to four real mul-

tiplications and two real additions, each modulus extractions requires two real multi-

plications and one real addition, and searching for the maximum in a set {|a(k)|}N−1
k=0

where a(k) is a complex scalar requires N comparisons. Each arg(a(k)) is expressed

as one access to a read-only memory (ROM) to map a(k) into arg(a(k)), and each

phase unwrapping operation is expressed as one phase unwrap operation. Each buffer

unit is defined to hold one real value.

The radix-2 FFT in FFTFE requires an undesirably large (N/2) log2N complex

multiplications and N log2N complex additions, whereas the peak search involves
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4.5 Complexity Analysis

N modulus extractions and N comparisons. The complexity of FFTFE adds to the

processing bottleneck described in Section 3.2.4 which is incurred every time the

frequency is re-estimated. The complexity of FFTFE, DiffFE, MPE, and BPS are

modulation-format dependent, since raising samples to the qth power and the required

number of test phase angles β, are modulation-format dependent [51].

In general, compared to the other estimators, CW-DA-ML has increased number

of multiplications and additions but avoids any intermediate decisions, comparisons,

ROM accesses, and phase unwrapping operations. The increase in number of mul-

tiplications and additions is traded-off with its fast, wide, and continuous frequency

tracking features. Using some representative parameter values, we see that CW-DA-

ML (L = 12, buffer units = 220) achieves more than 2.7 times reduction in buffer

units compared to FFTFE (N = 360, buffer units = 720) and BPS (L = 19, β = 32,

buffer units = 608) in 16-QAM.

Besides inheriting the advantages of CW-DA-ML such as no intermediate deci-

sions, comparisons, ROM accesses, and phase unwrapping, adaptive CW-DA estimator

achieves dramatic reduction in number of multiplications, additions and buffer units,

thanks to its two-tap filter structure. We compute and store only the upper triangle of

the matrix Φ in Eq. (4.6) while the lower triangle is obtained by diagonal reflection, as

Φ is Hermitian. Summations in Eq. (4.6) and Eq. (4.7) can be computed recursively,

since they can be written as

Φ(k) = Φ(k − 1) +

 ∣∣V̄ (k − 1)
∣∣2 V̄ ∗(k − 1)x(k − 1)

x∗(k − 1)V̄ (k − 1) |x(k − 1)|2

 (4.12)

and

z(k) = z(k − 1) +

V̄ ∗(k − 1)

x∗(k − 1)

, (4.13)

respectively. Furthermore, the matrix inversion in Eq. (4.5) is trivial as Φ is a 2-by-2
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matrix. Adaptive CW-DA estimator has a fixed format-transparent complexity, unlike

FFTFE, DiffFE, MPE, BPS, and CW-DA-ML whose complexity varies with M , L,

and β. Representative computational-load numbers, obtained using practical parameter

values, are given in Table 4.4. Adaptive CW-DA estimator reduces the multiplications,

additions, and buffer units by a factor of 36.5, 43.4, and 26.6, respectively, compared to

CW-DA-ML for QPSK signals. Although BPS only estimates the phase, it still needs

4.5, 21.6, and 50.7 times more multiplications, additions, and buffer units, respectively,

compared to adaptive CW-DA estimator.

Further reduction of adaptive CW-DA estimator’s complexity can be achieved

in an application specific integrated circuit (ASIC) implementation, for example, by

using the coordinate rotation digital computing technique [99]. We remark that the

required digital resolution of the ASIC, in terms of number of bits, to minimize the

signal quantization penalty will affect the implementation complexity.

4.6 Conclusion

A judicial choice of filter length is crucial in carrier estimators using fixed-length filters

such as MPE, BPS, and CW-DA-ML, regardless of their deployment in a PA or a dif-

ferentially encoded system. Although the degradation in the required SNR or nonlinear

phase noise tolerance is minimal when the filter length is not optimized, the resulting

degradation in cycle slip probability can cause system failures.

We presented a low-complexity adaptive CW-DA estimator which automatically

adapts its effective filter length according to the SNR, ∆νT , nonlinear phase noise,

and modulation format. It is noteworthy that no preset parameters are required. The

adaptive CW-DA estimator has similar ∆νT tolerance as MPE and CW-DA-ML, but

slightly less compared to BPS. However, the γb penalty compared to BPS is a mere

0.25 dB at ∆νT = 4.1× 10−4. Our new estimator achieves a lower or equal cycle slip
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4.6 Conclusion

probability compared to DiffFE-MPE, DiffFE-BPS, and CW-DA-ML, in linear and

nonlinear phase noise systems. Additionally, a larger nonlinear phase noise tolerance

than the other estimators and a complete frequency estimation range is achieved.
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Chapter 5

Intensity-Modulated Direct-Detection
Radio-over-Fiber System

In this chapter, we consider an IMDD RoF uplink with a loopback architecture em-

ploying RSOA-equipped RBSs for broadband wireless access network application. To

circumvent the bandwidth limitation of RSOA, RoF systems conventionally utilized

frequency downconversion of wireless signals to baseband before being fed to the

RSOA [41]. This requires additional signal processing circuitry at RBSs which in-

creases the cost and complexity, and defeats the attractiveness of RoF. Use of optical

envelope detection by RSOA was proposed in [42] to avoid the frequency downcon-

version of RF signals at RBSs. However, [42] is applicable only to wireless signals

with amplitude modulation format when the RF carrier frequency is larger than the

modulation bandwidth of RSOA. This technique deprives the advantages of advanced

modulation formats such as QPSK.

The smooth roll-off characteristics of RSOA’s frequency response was exploited

in [133] to suggest the use of postdetection electronic equalization at the receiver, to

compensate for the limited modulation bandwidth of RSOA. In addition to equaliza-

tion, FEC codes has been proposed to extend the reach of an RSOA-based system to 20

km [134]. Implementation of equalizers and FEC codes will add to the receiver com-
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5.1 Experimental Setup

plexity and overhead, respectively. In these techniques, the data rate will be limited, or

parallel processing will be necessitated, by the available electronic computation speed.

Suppressing one of the sidebands in a DSB modulated signal, is known to resolve

the signal fading problem in transmission over dispersive fibers [135]. Optical single

sideband (SSB) transmitters implemented using dual-electrode MZMs or electroab-

sorption modulated lasers have been proposed [135, 136]. However, these methods re-

quire more complex transmitter designs and laser diode placement at the RBSs which

is undesirable.

We propose a novel optical receiver design incorporating a simple DI before pho-

todetection at the CO, for an IMDD RoF system. A 40-km upstream transmission of

a 2-Gb/s BPSK signal at 6-GHz RF band over a SSMF using a directly modulated

RSOA in a single-fiber loopback network is experimentally demonstrated to assess the

effectiveness of our new receiver. The role of DI in equalizing the band-limitation of

the RSOA and in increasing the transmission reach by improving tolerance against CD

is elucidated. Additionally, we show how DI simultaneously helps generate optical

SSB signals in order to be robust against signal fading. Impact of backscattered light

on the RF band signal in a single-fiber loopback system and its effects on the achiev-

able transmission distance is analyzed. No frequency downconversion of RF signal at

the RBS, postdetection electrical passband equalization at the CO, or use of FEC codes

is required in our proposed receiver design.

5.1 Experimental Setup

Experimental setup is depicted in Fig. 5.1. A CW laser operating at 1550.14 nm was

first launched into SSMF through an optical circulator and then fed to an RSOA. The

RSOA used in the experiment is housed in a transistor-outlook (TO)-can package and

is an uncooled device. Its measured frequency response, when a laser light of −5
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Figure 5.1: Experimental setup for upstream transmission of BPSK radio signals.
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Figure 5.2: RSOA’s measured (a) frequency response, and (b) L/I characteristic.

dBm is incident, is shown in Fig. 5.2(a). The device exhibits a 3-dB bandwidth of 1.4

GHz and a roll-off of ∼3.4 dB/GHz. The polarization-dependent gain of the RSOA

was measured to be 2.5 dB and thus a polarization controller was inserted before the

RSOA. In real systems, use of polarization-insensitive RSOAs can eliminate the polar-

ization controller. A 2-Gb/s NRZ signal, having a pseudorandom bit pattern of length

231 − 1, is mixed with a 6 GHz RF carrier producing a BPSK signal which is used

to directly modulate the RSOA through a bias-T. The RSOA’s nonlinear light-versus-

current (L/I) curve is depicted in Fig. 5.2(b) for an injected laser light power of −10

dBm. The dc bias current of the RSOA was set to 41 mA, in the linear region of the

L/I transfer function.
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The intensity modulated optical signal was transmitted uplink through the SSMF,

fed through a DI, and directly detected by a PIN field-effect transistor (FET) receiver

at the CO. Free-spectral range (i.e., periodicity) of the DI used is 25 GHz. In the

transmission link, we have an optical band-pass filter (OBPF) with a bandwidth of

1.5 nm to emulate a waveguide grating router (WGR) at the remote node of a WDM

passive optical network system. The WGR also filters out the out-of-band ASE noise

from RSOA, thus improving the optical SNR. The received electrical RF signal is

mixed with a 6-GHz oscillator in a coherent homodyne demodulation and fed into an

error detector for BER measurement. Due to lack of carrier recovery circuit, a single

oscillator was utilized for both BPSK modulation and demodulation.

5.2 BER Performance

We first try to measure the BER for 20-km transmission without DI. However, a com-

plete eye closure was observed and we were unable to measure the BER as the signal

clock was not recoverable, confirming the severe bandwidth limitation of the RSOA.

BER measurement was then repeated with the DI being placed before the receiver

for 0-, 20-, 30-, and 40-km transmission. Fig. 5.3 shows the measured BER as a func-

tion of the root-mean-square optical modulation index (OMI) of the signal measured

at the output of the DI. The injection power of the seed light into the RSOA was −6.0,

−6.0, −8.1, and −10.6 dBm for 0, 20, 30, and 40 km, respectively. For 0- and 20-km

transmission, the RSOA was biased at 41 mA. Since the effects of Rayleigh backscat-

tering increases with fiber length, the RSOA gain was reduced by lowering its bias

current as the transmission distance increased. The bias was set to 34 and 30 mA for

30- and 40-km fibers, respectively. The phase of the DI was adjusted to maximize eye

opening and to minimize BER. The optical power measured at the receiver was −9.1

dBm for back-to-back transmission.
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Figure 5.3: (a) Measured BER as a function of OMI for 0-, 20-, 30-, and 40-
km transmission over SSMF. Plotted on the right are the electrical eye diagrams
measured at the receiver after transmission over (b) 0-km at 40.2% OMI, (c)
20-km at 40.2% OMI, (d) 30-km at 36.6% OMI, and (e) 40-km at 45.5% OMI.

A BER lower than 10−9 is achieved when the OMI is > 20% for 0, 20, and 30

km. At these lengths, no BER degradation was observed even at a large OMI of 100%.

Compared to the back-to-back measurement, we have slight improvement of BER per-

formance after 20-km transmission. For 40-km transmission, we have an OMI penalty

of 3.5 dB with respect to the back-to-back measurement. Performance degradation

caused by clipping effects and nonlinear L/I characteristics of the RSOA is observed

for 40-km transmission in excess of 40% OMI. A large swing in the drive current sub-

jects the output light to clipping or nonlinear L/I region in the lower portion and to

saturation at the upper portion. Nevertheless, clear eye opening in the measured electri-

cal eye diagrams at the receiver for signals near 40% OMI as shown in Fig. 5.3(b)–(e),

confirms the successful transmission up to 40 km.

5.3 Performance Improvement by DI

The successful accommodation of a wideband signal (i.e., 2 Gb/s NRZ signal at 6

GHz RF band) by RSOA and enabling of an extended transmission reach (i.e., 40 km),
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made possible by the use of DI, is analyzed next.

5.3.1 Optical Filter

3-dB 

coupler

3-dB 

coupler

DI

3-dB 

coupler

3-dB 

coupler

DI

Figure 5.4: Schematic diagram of a DI.

Fig. 5.4 shows the schematic diagram of a DI comprising two 3-dB couplers con-

nected by two arms of different lengths. The input signal is split and acquires different

time delays and phase shifts, before interfering at a second coupler. The transfer func-

tion of the DI can be expressed as [137]

HDI(ω) = 1 + ej(ωTDI+θDI) (5.1)

where ω is the angular frequency. Here, TDI is the relative time delay between the

two DI arms and θDI is the adjustable phase of the DI. HDI(ω) is periodic with a

period 1/TDI Hz. When θDI equals π, DI exhibits high-pass-filter characteristics up

to (2TDI)
−1 Hz and helps to counteract the low-pass-filter characteristics of RSOA.

Introduction of DI recovers the higher frequency components, effectively performing

optical equalization.

The optical waveform at the input to the PIN-FET receiver after a 20-km trans-

mission is captured with a high-speed sampling oscilloscope in Fig. 5.5. In Fig. 5.5(a)

without DI, the high-frequency components such as the 6-GHz RF carrier is clearly

suppressed by the low modulation bandwidth of the RSOA and the optical waveform

gives only a coarse envelope of the transmitted BPSK signal. Fluctuations of the wave-

form is attributed to residual coupling of the input baseband NRZ signal with the output
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Figure 5.5: Optical waveform of the radio signal captured at the input to the
PIN-FET receiver (a) without DI, and (b) with DI.

BPSK signal at the mixer. When DI is inserted, the 6-GHz RF carrier can be clearly

observed in the captured optical waveform in Fig. 5.5(b). In essence, optical filtering

by DI greatly enhances the bandwidth of the system.

In IMDD systems, where phase information is lost upon square-law photode-

tection, optical equalization is generally accepted to outperform electrical equaliza-

tion [138]. Another advantage over electrical equalization is that a single DI can be

used for multiple channels in WDM RoF systems thanks to the periodicity of the DI,

provided the RSOAs have similar frequency response [138]. For example, a 25-GHz

DI can be used in a set-and-forget mode to equalize multiple WDM channels anchored

at a 100-GHz spaced frequency grid [139]. Here, the cost of the DI will be shared

among the WDM tributaries and becomes insignificant as the number of channels in-

crease.

5.3.2 Positive Chirp

Since the GVD parameter β2 at 1550 nm for a SSMF is negative, CD broadens the

pulse envelope width of an intensity modulated optical pulse on propagation in a fiber

and redistributes its frequency components such that higher frequency components are

pushed to the leading edge of the pulse, as shown in Fig. 5.6(a). A broadened pulse

introduces ISI which limits the transmission distance.
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Figure 5.6: Propagation of intensity modulated optical pulses which are (a)
unchirped, (b) negatively chirped, and (c) positively chirped.

The injected current, besides modulating the gain, also modulates the refractive

index of the RSOA to produce a negatively chirped optical pulse [43, 140]. A pulse

is said to be negatively (positively) chirped, with a negative (positive) chirp parameter

Cch, if its carrier frequency decreases (increases) with time. Since β2Cch > 0 for a

system employing RSOA, a negatively chirped optical pulse monotonically broadens

with distance at a rate faster than an unchirped pulse [54]. Hence, negative chirping

by RSOA compounds the pulse broadening effect of CD as seen in Fig. 5.6(b), making

RSOAs sensitive to CD and thus further limiting the bit rate-distance product.

However, scrutinizing Fig. 5.3, BER improves briefly at 20 km before deterio-

rating with increase in fiber length. This is ascribed to positive chirping by DI in its

SSB filtering action [137]. Fig. 5.6(c) illustrates how a positively chirped pulse with

β2Cch < 0 compensates for the GVD-induced chirp leading to an initial pulse com-

pression, before eventual broadening [141]. In our experiment, DI’s positive chirp

counteracts the GVD- and RSOA-induced negative chirp, aiding a longer transmis-
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sion distance of 40 km. DI is shown to be indeed capable of compensating the chirp

imposed by a semiconductor optical amplifier in [142].

5.4 Rayleigh Backscattering

Signal Interferer RF spectrum

Type I 

Type II 

Signal

Crosstalk

RSOA

Receiver

Type I 

Type II 

(Carrier    )

Signal
Interferer

Laser 

diode

Signal         

Figure 5.7: Effects of Rayleigh backscattering in RoF systems.

Rayleigh backscattering can be classified into two types, which are illustrated in

Fig. 5.7 with the associated signal and resulting interferer spectra. In a single-fiber

loopback network, Rayleigh backscattering-induced crosstalk can limit the maximum

reach in two ways: (i) Rayleigh backscattered seed light interferes with the upstream

data signal (Type I), and (ii) Rayleigh backscattered upstream data signal is modulated

again by RSOA and interferes with the upstream data signal (Type II) [143]. Compared

to baseband transmission, the deleterious effects of both Type-I and Type-II crosstalk

are greatly reduced in an RF band transmission enabled by the DI’s bandwidth equal-

ization. As illustrated by the received RF spectra in Fig. 5.7, low-frequency Rayleigh

crosstalk of Type I, which extends from zero frequency to several MHz at the receiver

and accounts for 50% of the crosstalk, does not affect the high-frequency radio sig-
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nal [144]. A large amount of Type-II crosstalk also falls outside the radio signal band

at the receiver when the signal is confined within an octave.

5.5 Single Sideband Generation

5.5.1 Chromatic Dispersion Induced RF Power Fading

· C-USB      C-LSB

· No fading

· C-USB      C-LSB

· Partial fading

· C-USB      C-LSB

· Total fading

Fiber input Fiber output

USB LSB

Carrier

Phase of spectral components 

change while propagating 

through the fiber

Figure 5.8: CD-induced RF power fading in a DSB signal.

Fig. 5.8 illustrates the RF power fading phenomenon. CD causes each spectral

component of a signal propagating in the fiber to acquire a different phase shift depend-

ing on its frequency, fiber length, and fiber’s GVD parameter, as dictated by Eq. (2.13).

At the photodetector, in a DSB modulation, the upper-frequency sideband (USB) and

the lower-frequency sideband (LSB) will beat with the optical carrier, thereby gen-

erating carrier-USB (C-USB) and carrier-LSB (C-LSB) beat signals which interfere

to produce the electrical RF signal [44]. The relative phase shifts, induced by CD,

between the carrier and each sideband causes a phase difference in the two resultant

beat signals. As the phase difference deviates from zero, the electrical RF signal ex-

periences fading caused by destructive interference between the beat signals [45]. A

total fading occurs when the phase difference equals π due to a complete cancellation
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between the C-USB and C-LSB beat signals.

The detected RF power of the DSB modulated optical field will vary as [145]

PRF ∝ cos2

[
πLfDCD

c
λ2f 2

RF

]
(5.2)

where Lf is the fiber length of dispersion DCD, λ is the optical carrier wavelength, and

fRF is the RF frequency. Power nulls occur at fiber lengths of

Lf =
ic

2DCDλ2f 2
RF

, i = 1, 3, 5, . . . (5.3)

and at RF frequencies of

fRF =

√
ic

2DCDλ2Lf
, i = 1, 3, 5, . . . . (5.4)

The RF power degradation due to CD, with DCD = 17 ps/(nm·km), as a function of

fiber length and as a function of RF frequency is shown in Fig. 5.9. Accurate adaptation

of the fiber length according to the RF frequencies is needed to minimize the power

penalty caused by CD-induced RF power fading [44]. As the RF frequency increases,

the fading becomes more pronounced as it occurs at shorter frequency and fiber-length

intervals, thus severely limiting the transmission distance and the RF frequencies that

can be supported.
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Figure 5.9: RF power degradation at the receiver for optical DSB modulation as
a function of (a) fiber length and (b) RF frequency.
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5.5.2 Sideband Suppression by DI
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Figure 5.10: Optical spectra of the signal before and after DI. Also depicted is
the transmittance of the DI.

Fig. 5.10 shows the optical spectra of the signal measured before and after the DI,

after a 20 km transmission. Also depicted in the figure is the transmittance of the DI.

Direct modulation of RSOA by the 6-GHz radio signal produces two small sidebands

around the optical carrier. The null frequency of the DI is located 4.2 GHz off the laser

diode frequency. Thus, it filters out the LSB of the RSOA output, leaving the USB and

thus creating an SSB signal. The LSB of the signal at the output of the DI is suppressed

by ∼10 dB compared to the USB.

To demonstrate that our proposed scheme successfully generates optical SSB sig-

nals and averts CD-induced RF fading, we perform an RF tone fading measurement

using the modified setup in Fig. 5.11 which isolates the CD effect from others. The

injection power of the seed light into the RSOA is kept at−6 dBm throughout this mea-

surement. The RSOA is directly modulated with a 6-GHz sinusoidal wave and sent to

SSMF for transmission. An EDFA is employed after transmission to compensate for

the fiber loss. An OBPF (i.e., OBPF 2 in Fig. 5.11) is used to reject the out-of-band
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5.5 Single Sideband Generation

ASE noise and thus minimize the contribution of noise to the received signal power.

The optical power into the DI is kept at −7 dBm.

Laser 

diode

PhotodetectorDI

RSOA

SSMF

OBPF 1

EDFA

6 GHzCirculator

OBPF 2

Attenuator

Figure 5.11: RF tone fading measurement setup.
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Figure 5.12: Relative RF power of a 6-GHz sinusoidal wave as a function of
transmission distance over SSMF.

Fig. 5.12 plots the 6-GHz RF tone power relative to the power at 0 km as a function

of link distance. The signal power at the detector is fairly constant with a small vari-

ation of 7.0 dB over 120 km. The power variation is attributed to an incomplete LSB

suppression by the DI. A finite sideband suppression ratio (SSR) of 10 dB witnessed

in Fig. 5.10 leads to a 5.7-dB fluctuation of the received RF power in the presence of

CD as calculated using [146],

PSSR = 20 log10

(
10

SSR
20 + 1

10
SSR
20 − 1

)
(5.5)
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which agrees with our measurement. Also seen in the Fig. 5.12 is that maximum RF

power, indicative of constructive interference between the C-USB and C-LSB beat

signals, is achieved at 100 km instead of at 0 km. This is because the optical signal is

prechirped as the spectral components have a relative phase shift at 0 km.

5.6 Tolerable RF Carrier Frequencies and Frequency
Offsets
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Figure 5.13: RF carrier frequency tolerance.

Fig. 5.13 shows the measured BER versus RF carrier frequency after 20-km trans-

mission using the setup in Fig. 5.1. The received optical power is−9.1 dBm. The OMI

of the signal is set to 40.2% at 6 GHz and kept unchanged throughout this measure-

ment. We have a BER < 10−10 for RF carrier frequencies from 4.0 to 7.5 GHz. Due to

the limited bandwidth of the system, especially that of the RSOA, the BER deteriorates

rapidly when the RF carrier frequency exceeds 8 GHz.

Fig. 5.14 analyzes the tolerance of frequency offset between the laser diode and

DI in the setup of Fig. 5.1. Here, zero frequency offset refers to the case when the

null frequency of the DI is located 4.2 GHz off the laser diode frequency. The RF

carrier frequency is 6 GHz and the received optical power is −9.1 dBm. It is found

97



5.7 Conclusion

� � � � � � � � � � � � � � �
� � � � �

� � � �

� � � 


� � � 	

� � � �

� � � �

� � � �

� � � �

�

�

�
��

�  � � � � 
 � � � � 	 	 � � � � � � � � �

Figure 5.14: Tolerance of frequency offset between the DI and laser diode when
the RF carrier frequency is 6 GHz.

that the frequency offset should be kept within ±2 GHz to have a BER less than 10−9.

Since both the seed light and the DI are located in the same place (i.e., CO), frequency

alignment could be easily achieved by locking the seed light wavelength to the DI

[137].

5.7 Conclusion

We have proposed a novel direct detection receiver incorporating a DI for an RSOA-

based IMDD RoF system. Effectiveness of our new receiver was assessed through

an upstream transmission of a 2-Gb/s, 6-GHz radio signal in loopback-configured

network using a directly modulated uncooled-RSOA packaged in a TO-can.

Use of DI greatly alleviates the modulation bandwidth restriction of the RSOA,

enabling a 2 Gb/s uplink BPSK radio signal at an RF carrier frequency of up to 7.5

GHz. A large frequency mismatch of up to ±2 GHz between the DI and laser diode

frequency was shown to be tolerable. By virtue of DI’s positive chirping action and the

high-frequency octave-confined radio signal transmission which reduces the in-band

intensity noise from Rayleigh backscattering, an extended link distance of up to 40 km
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was achieved. To the best of our knowledge, this is the longest transmission distance

and also highest RF carrier frequency carried over a directly modulated RSOA in a

directly-detected loopback-configured network.

Moreover, signal fading problem in DSB signals were overcome by DI which

suppresses a sideband to generate optical SSB signals just prior to photodetection. Our

new optical receiver design is easily implementable as only an additional DI placement

is required at the CO, with no changes at the RBSs.
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Chapter 6

Conclusion

6.1 Summary of Main Contributions

First, we addressed the coherent optical receiver design problem with respect to car-

rier phase and frequency estimation, for nonbinary modulations which are essential in

improving the spectral efficiency. Nonbinary modulation, compared to binary modula-

tion, is also more robust against transmission impairments, including CD and PMD [9].

A new joint phase noise and frequency offset estimator, named CW-DA-ML, was de-

rived in Chapter 3. The modulation-agnostic CW-DA-ML achieves better ∆νT and

∆fT tolerance than FFTFE-MPE, DiffFE-MPE, and DA-ML. CW-DA-ML is supe-

rior in carrier estimation accuracy at low SNR and/or sample size N , compared to

FFTFE-MPE and DiffFE-MPE. This is crucial, given the development of advanced

FEC codes with low BER thresholds which lowers the target operating SNR of mod-

ern systems. Moreover, it is desirable to operate at lower signal power to reduce fiber

nonlinearity. Aided by the absence of phase unwrapping and higher order noises, CW-

DA-ML achieves lower cycle slip probability than MPE. Bolstered by the low cycle

slip probability, a PA CW-DA-ML with low pilot overhead of 0.2% is demonstrated.

Symbol-by-symbol tracking feature and fast convergence behavior helps CW-DA-ML

to reliably track time-varying frequency offset. Additionally, the phase noise tolerance
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and cycle slip probability of several 4-, 8-, and 16-point constellations were analyzed.

Next, we established the need for receivers having carrier estimators with adap-

tive filter length to optimize the BER in future reconfigurable optical networks. Hence,

adaptive CW-DA estimator with an effective filter length that automatically adapts ac-

cording to the SNR, ∆νT , nonlinear phase noise, and modulation format was presented

in Chapter 4. It can operate in a set-and-forget mode as it requires no a priori system

statistics and no preset parameters. The filter length of a carrier estimator is shown to

affect the cycle slip probability besides the BER. Considering that FEC codes are not

robust to burst errors and cycle slips, we demonstrate that filter-length optimization

is necessary to avoid spectral-efficiency reduction in PA systems and potential system

failures in differential encoding systems. Our estimator achieves a lower cycle slip

probability and a greater nonlinear phase noise tolerance than DiffFE-MPE, DiffFE-

BPS, and CW-DA-ML. Reduced complexity, due to the two-tap structure, makes adap-

tive CW-DA estimator favorable for practical implementation.

Finally, in Chapter 5, we considered the direct-detection receiver design for an

RoF system employing RSOA at the RBSs. We proposed to incorporate an optical

DI before the photodetector at the receiver and demonstrated the receiver with an up-

stream transmission of a 2-Gb/s 6-GHz BPSK radio signal using RSOA in a single-

fiber loopback network. The DI, acting as an optical equalizer, compensates for the

limited RSOA modulation bandwidth. SSB filtering by DI relieves the CD-induced

RF fading effect and helps to overcome the maximum link-length cap. Furthermore,

extended transmission distance of up to 40 km is shown to be made possible by the (i)

positive chirp of DI which offsets the negative chirp of GVD and RSOA, and (ii) re-

duced Rayleigh backscattering induced in-band crosstalk. Gradual shifting of wireless

services to higher RF bands with increasing data rates places the proposed system as

a strong contender, due to its direct modulated RSOA capability up to 7.5 GHz band

encoded by 2 Gb/s signal and simple RBSs requiring no additional signal processing.
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6.2 Suggestions for Future Research

The contributions in the previous chapters lead naturally to various avenues for further

research. We mention some possible extensions in the following subsections.

6.2.1 Carrier Estimators for Space-Division Multiplexed Systems

Currently, space-division multiplexing (SDM) of parallel data streams in the cores of

multicore fibers or in the modes of multimode fibers is of immense research interest to

increase capacity per fiber as the capacity limit of SSMFs are approached [147, 148].

Coherent detection and multiple-input multiple-output DSP is used in the receiver to

recover the spatial data streams, which might be significantly mixed [149]. Key DSP

steps include carrier phase and frequency estimation.

It is desirable to further develop CW-DA-ML [124] and adaptive CW-DA [150]

estimators for carrier estimation application in SDM systems. Spatial coupling causes

phase and frequency fluctuations between modes (or cores) to be correlated, resulting

in common-mode impairments which can be exploited by joint carrier estimation of

multiple received channels [151]. A performance comparison, with the master-slave

phase estimator for multicore fibers proposed by [151] and the single digital PLL-based

joint carrier estimation of multiple channels in few-mode fibers proposed by [152],

will be in order. For simulation of carrier estimators in SDM systems, understanding

of mode coupling is necessary and [153] gives a preliminary insight into emulating a

linear propagation in few-mode fibers.

6.2.2 Equalizers with Adaptive Filter Length

Preset constant filter length has been an inherent feature of equalizers described for

dispersion compensation in the literature, for example see [154]. Following the mo-
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tivation in the introduction of Chapter 4, equalizers with fully adaptive filter length

are desirable to compensate for time-varying dispersion due to utilization of different

transmission paths in reconfigurable optical networks. However, equalizers with adap-

tive filter length has received little attention in optical communications. Given that

the equalization performance and complexity are nondecreasing function of the filter

length, the challenge is to intelligently decide on a sufficient filter length which best

balances equalization performance with complexity.

Several efforts in seeking the best filter length include use of gradually increasing

filter length [155], segmented filter structure [156], two competing filters of different

lengths [157], and least-mean square styled variable filter length [158]. However, these

methods (i) allow only filter-length increment, (ii) require filter-length change in fixed

step sizes, (iii) sensitive to design parameter choice which are subjective and needs to

be manually tuned, or (iv) assume a priori knowledge of the desired signal making

it not suitable for blind signal processing. The above methods are also untested for

dispersion compensation in optical communications.

Another possible route to pursue in realizing equalizers with adaptive filter length

is the implementation of equalizers in the form of order-recursive lattice filters [159].

A lattice filter of order (or length) Llatt consists of a cascade of Llatt elementary stages,

where each stage is statistically decoupled from the others. Hence, the modular struc-

ture of the lattice filter lends itself to the implementation of a variable filter order as

the filter order can be changed by simply adding or removing stages without affecting

earlier computations.

6.2.3 Phase-Modulated Coherent Detection RoF System

RoF, or the use of optical fiber for delivery of radio services, is a promising technology

for the burgeoning next-generation wireless networks, as it provides a large bandwidth
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and a graceful evolution strategy due to its transparent optical transport of wireless

signals [32]. Phase-modulated RoF links with coherent detection offers numerous ad-

vantages over IMDD links. Electrical-to-optical encoding by optical phase modulators

is linear and provides higher modulation depths, in contrast to IMDD’s inherently non-

linear modulation transfer characteristic which limits the dynamic range [160, 161].

Compared to intensity modulation, constant-intensity phase modulation is less vul-

nerable to fiber nonlinearities and requires no dc bias at the RBS which eliminates

performance degradation due to potential drifting of Adc bias in Eq. (1.4) [162]. Co-

herent detection can also offer increased receiver sensitivity and spurious-free dynamic

range compared to direct-detection links [163]. Additionally, coherent detection allows

better frequency selectivity and closer channel spacing in WDM systems [164].

RF signal

Central 

office
RBS

Phase 

modulator

DSP
Tx laser

Optical 

hybrid

A
D

C

LO laser

Phase modulated 

RoF signal

Figure 6.1: Phase-modulated RoF link with coherent detection.

The phase-modulated RoF uplink is illustrated in Fig. 6.1. Optical field of the

transmitter laser is modeled as Es(t) = exp(j(θs(t)+ωst)), where θs(t) and ωs are the

phase noise and angular frequency of the transmitter laser, respectively. The received

RF signal ERF (t), given by Eq. (1.3), at the RBS is used to drive a LiNbO3 optical

phase modulator which linearly encodesERF (t) onto the phase of the transmitter laser.

The resultant optical field launched into the fiber is

ERoF,PM(t) = exp

[
j

(
θs(t) + ωst+

π

Vπ
A(t) cos(φ(t) + 2πf0t)

)]
, (6.1)
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where π/Vπ is the modulation depth factor, with Vπ being the half-wave voltage of the

phase modulator [165].

At the CO, the phase modulated RoF signal is mixed with a LO laser ELO(t),

given by Eq. (2.9), in a 2× 4 90◦ optical hybrid and detected by balanced photodetec-

tors. Following the coherent signal reception described in Section 2.2.3 and assuming

no ISI or nonlinear distortion, the sampled photodetector output is

rRoF,PM(lT̄ ) =R
√
PLO

× exp

[
j

(
θ(lT̄ ) + ∆ω(lT̄ ) +

π

Vπ
A(lT̄ ) cos

(
φ(lT̄ ) + 2πf0lT̄

))]
(6.2)

where l = 0, 1, 2 . . . is an integer, T̄ = T/T0 is the sampling interval, and other

variables are as defined in Section 2.2.

Key to obtaining the benefits of phase modulated RoF is carrier estimation of θ,

∆ω, and f0 in Eq. (6.2) for linear demodulation of the data signal [161]. A carrier

estimator comprising a digital PLL to estimate θ and ∆ω, followed by a linear phase

extractor, and an RF carrier recovery to estimate f0 was proposed in [166]. However, a

complete study of the admissible symbol rates, modulation formats, ∆ν, ∆f , and f0, of

the carrier estimator remains unexplored. The carrier estimator of [166] is not format

transparent, and requires complicated manual loop parameter optimization between

the competing demands of good BER and acquisition time or estimation range.

Format-transparent, adaptive, carrier estimators for phase modulated RoF signals

with good ∆ν tolerance, ∆f tolerance, f0 estimation range, and without any preset

parameters remain to be developed.
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Appendix A

Derivation of DA-ML Phase Estimator

The likelihood function Λ(θ, k + 1) is given by the joint PDF p(r(k), . . . , r(k − L+

1)|θ). Given the assumption of no ISI, r(k) and r(l) are independent since n(k) and

n(l) are independent for k 6= l. Hence, the likelihood function can be written as

Λ(θ, k + 1) =
k∏

l=k−L+1

p(r(l)|θ) (A.1)

In carrier-suppressed modulation formats, it is possible to arrange the signal points in

the constellation as si = −si+M/2. Substituting the PDF

p(r(l)|θ) =
M−1∑
i=0

p(r(l)|θ,m(l) = si)p(m(l) = si) (A.2)

and

p(r(l)|θ,m(l) = si) =
1

πσ2
n

exp

[
−|r(l)− sie

jθ|2

σ2
n

]
, (A.3)

where p(m(l) = si) = 1/M , into Eq. (A.1) gives

Λ(θ, k + 1) =
k∏

l=k−L+1

M−1∑
i=0

1

Mπσ2
n

exp

[
−|r(l)− sie

jθ|2

σ2
n

]

=
k∏

l=k−L+1

1

Mπσ2
n

exp

[
−|r(l)|

2

σ2
n

]

×
M−1∑
i=0

exp

[
−|si|

2

σ2
n

]
exp

[
2Re[r(l)s∗i e

−jθ]

σ2
n

]
. (A.4)
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The terms si and si+M/2 in Eq. (A.4) can be combined using the identity cosh(a) =

(ea + e−a)/2 since si = −si+M/2 for i = 0, . . . , (M/2)− 1. Hence we have,

Λ(θ, k + 1) =
k∏

l=k−L+1

1

Mπσ2
n

exp

[
−|r(l)|

2

σ2
n

]

×
M
2
−1∑

i=0

exp

[
−|si|

2

σ2
n

]
cosh

[
2Re[r(l)s∗i e

−jθ]

σ2
n

]
. (A.5)

The log-likelihood function ln Λ(θ, k + 1) can now be written as

ln Λ(θ, k + 1) =
k∑

l=k−L+1

ln

M
2
−1∑

i=0

exp

[
−|si|

2

σ2
n

]
cosh

[
2Re[r(l)s∗i e

−jθ]

σ2
n

]
+

k∑
l=k−L+1

ln

[
1

Mπσ2
n

exp

[
−|r(l)|

2

σ2
n

]]
(A.6)

Solving ∂ ln Λ(θ, k + 1)/∂θ = 0 at θ = θ̂(k + 1) gives the maximum likelihood phase

estimate θ̂(k + 1) as

cos θ̂(k + 1)
k∑

l=k−L+1

∑M
2
−1

i=0 exp (−s̄i) sinh[Γi(l, θ̂(k + 1))]Im[r(l)s∗i ]∑M
2
−1

i=0 exp (−s̄i) cosh[Γi(l, θ̂(k + 1))]

= sin θ̂(k + 1)
k∑

l=k−L+1

∑M
2
−1

i=0 exp (−s̄i) sinh[Γi(l, θ̂(k + 1))]Re[r(l)s∗i ]∑M
2
−1

i=0 exp (−s̄i) cosh[Γi(l, θ̂(k + 1))]
(A.7)

where for simplicity we have let s̄i = |si|2/σ2
n and Γi(l, θ̂(k + 1)) = (2/σ2

n)Re[r(l)

s∗i e
−jθ̂(k+1)].

It is difficult to explicitly solve the highly nonlinear Eq. (A.7) for θ̂(k+1), hence a

decision feedback approach is adopted to derive an implementable structure. Assuming

θ̂(l) has been obtained, the symbol detector uses it to produce a symbol decision m̂(l)

for sample r(l) according to Eq. (2.25). For BPSK at high SNR, since M = 2 and

tanh(a) ≈ sgn(a) at large a, Eq. (A.7) reduces to

θ̂(k + 1) = arctan

[∑k
l=k−L+1 Im[r(l)m̂∗(l)]∑k
l=k−L+1 Re[r(l)m̂∗(l)]

]
(A.8)
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where the trial signal point si has been replaced with the symbol decision m̂(l). In

the case of signal constellations with M > 2, for a fixed l in Eq. (A.7), each of the

summations over i is dominated in magnitude by the si which matches the symbol

decision m̂(l). Thus, Eq. (A.7) again reduces to Eq. (A.8) when si is replaced with

m̂(l). This decision-feedback approximation is more accurate for M = 2 than for

M > 2.

Equation (A.8) can be written in an equivalent form using a complex phasorU(k+

1)

U(k + 1) =
k∑

l=k−L+1

r(l)m̂∗(l) (A.9)

whose argument gives the maximum likelihood phase estimate, i.e., arg(U(k + 1)) =

θ̂(k + 1).
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Derivation of ŵ in CW-DA-ML

The cost function J(k) of Eq. (3.5) can be rewritten as follows:

J(k) =
k∑
l=1

e∗(l)e(l)

=
k∑
l=1

[
r∗(l)

m̂∗(l)
− C(l − 1)wH(k)y∗(l − 1)

][
r(l)

m̂(l)
− C(l − 1)wT (k)y(l − 1)

]
(B.1)

By treating w and w∗ as independent variables, we may solve for the stationary points

of the real-valued function J(k,w,w∗) using the following theorem [167].

Theorem B.1. If f(b,b∗) is a real-valued function of the complex vectors b and b∗,

then the vector pointing in the direction of the maximum rate of change of f(b,b∗) is

∂f(b,b∗)/∂b∗ , which is the partial derivative of f(b,b∗) with respect to b∗.

Hence, taking partial derivative of Eq. (B.1) with respect to w∗(k), we have

∂J(k)

∂w∗(k)
=

k∑
l=1

∂
[
r∗(l)
m̂∗(l)

− C(l − 1)wH(k)y∗(l − 1)
]

∂w∗(k)
e(l)

=
k∑
l=1

[−C(l − 1)y∗(l − 1)]e(l). (B.2)
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In the above step, we have used the vector differentiation identity:

∂
(
a−wHb

)
∂w∗

= −b, (B.3)

where a is a scalar and b is a vector. Next, we rearrange the term wT (k)y(l − 1) to

yT (l − 1)w(k) in e(l). Finally, solving ∂J(k)/∂w∗(k) = 0 yields the least-squares

optimum weight vector ŵ(k) as

0 =
k∑
l=1

[−C(l − 1)y∗(l − 1)]e(l)

k∑
l=1

C(l − 1)
r(l)

m̂(l)
y∗(l − 1) =

k∑
l=1

C2(l − 1)y∗(l − 1)yT (l − 1)ŵ(k)

ŵ =

[
k∑
l=1

C2(l − 1)y∗(l − 1)yT (l − 1)

]−1 k∑
l=1

C(l − 1)
r(l)

m̂(l)
y∗(l − 1) (B.4)
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Recursive Update of ŵ in CW-DA-ML

It is straightforward to see that Eq. (3.7) and Eq. (3.8) can be updated recursively as

Φ(k) = Φ(k − 1) + C2(k − 1)y∗(k − 1)yT (k − 1), (C.1)

z(k) = z(k − 1) + C(k − 1)
r(k)

m̂(k)
y∗(k − 1). (C.2)

A special form of the matrix inversion lemma is [168]

(
A + abbH

)−1
= A−1 − aA−1bbHA−1

1 + abHA−1b
(C.3)

for an arbitrary nonsingular L-by-L matrix A, an L-by-1 vector b, and a scalar a.

Making the following identifications

A = Φ(k − 1) (C.4)

b = y∗(k − 1) (C.5)

a = C2(k − 1) (C.6)

and substituting them into Eq. (C.3), we obtain the recursive equation for updating the

inverse of Φ(k):

Φ−1(k) = Φ−1(k − 1)− C2(k − 1)Φ−1(k − 1)y∗(k − 1)yT (k − 1)Φ−1(k − 1)

1 + C2(k − 1)yT (k − 1)Φ−1(k − 1)y∗(k − 1)
.

(C.7)
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For convenience we define a gain vector g(k), as follows

g(k) =
C(k − 1)Φ−1(k − 1)y∗(k − 1)

1 + C2(k − 1)yT (k − 1)Φ−1(k − 1)y∗(k − 1)
. (C.8)

Incorporating the above definition into Eq. (C.7), we obtain

Φ−1(k) = Φ−1(k − 1)− g(k)C(k − 1)yT (k − 1)Φ−1(k − 1). (C.9)

By rearranging the gain vector in Eq. (C.8), we have

g(k) =
[
Φ−1(k − 1)− g(k)C(k − 1)yT (k − 1)Φ−1(k − 1)

]
C(k − 1)y∗(k − 1).

(C.10)

Using Eq. (C.9), we recognize the term multiplying C(k − 1)y∗(k − 1) in Eq. (C.10)

is Φ−1(k). Hence, we can express the gain vector as

g(k) = Φ−1(k)C(k − 1)y∗(k − 1). (C.11)

Next, to derive the recursive time-update equation for the optimum filter-weight vector

ŵ(k), we express Eq. (3.6) using Eq. (C.2) and Eq. (C.11) as

ŵ(k) = Φ−1(k)z(k − 1) + Φ−1(k)C(k − 1)
r(k)

m̂(k)
y∗(k − 1)

= Φ−1(k)z(k − 1) + g(k)
r(k)

m̂(k)
. (C.12)

Substituting Φ−1(k) in the above equation with Eq. (C.9), we get

ŵ(k) = Φ−1(k − 1)z(k − 1)− g(k)C(k − 1)yT (k − 1)Φ−1(k − 1)z(k − 1)

+ g(k)
r(k)

m̂(k)

= ŵ(k − 1)− g(k)C(k − 1)yT (k − 1)ŵ(k − 1) + g(k)
r(k)

m̂(k)

= ŵ(k − 1) + g(k)

[
r(k)

m̂(k)
− C(k − 1)ŵT (k − 1)y(k − 1)

]
= ŵ(k − 1) + g(k)ξ(k) (C.13)
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where

ξ(k) =
r(k)

m̂(k)
− C(k − 1)ŵT (k − 1)y(k − 1)

=
r(k)

m̂(k)
− V (k) (C.14)

is the a priori estimation error.

Finally, g(k) of Eq. (C.8), ξ(k) Eq. (C.14), ŵ(k) of Eq. (C.13), and Φ−1(k) of

Eq. (C.9), in this order, describe one iteration of the weight-vector update. We may

add an additional step of computing an intermediate vector

ψ(k) = C(k − 1)Φ−1(k − 1)y∗(k − 1) (C.15)

at the beginning of the weight-vector update, to simplify the duplicate computation of

ψ(k) in the gain vector g(k) and ψH(k) in the inverse autocorrelation matrix Φ−1(k),

as illustrated in Table 3.1.
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Derivation of ŵ in Adaptive CW-DA
Estimator

First, lets represent Eq. (4.3) in a concise vector form as

V̄ (k + 1) = w1V̄ (k) + w2x(k)

=

[
w1 w2

]V̄ (k)

x(k)


= wTy(k) (D.1)

where y(k) is the filter-input vector [V̄ (k), x(k)]T . By substituting V̄ (l) in Eq. (4.4)

with Eq. (D.1), the cost function can be rewritten as

J(k) =
k∑
l=1

∣∣x(l)−wTy(l − 1)
∣∣2

=
k∑
l=1

[
x∗(l)−wHy∗(l − 1)

][
x(l)−wTy(l − 1)

]
. (D.2)

Since J(k) is a real valued function of w and w∗, we proceed as per Theorem B.1:

∂J(k)

∂w∗
=

k∑
l=1

∂
[
x∗(l)−wHy∗(l − 1)

]
∂w∗

[
x(l)−wTy(l − 1)

]
=

k∑
l=1

[
−y∗(l − 1)

][
x(l)− yT (l − 1)w

]
(D.3)
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D Derivation of ŵ in Adaptive CW-DA Estimator

where we had used the identity in Eq. (B.3) and had rearranged the term wTy(l − 1)

to yT (l − 1)w. Finally, we equate Eq. (D.3) to zero to obtain the ŵ which minimizes

J(k) as

0 =
k∑
l=1

[
−y∗(l − 1)

][
x(l)− yT (l − 1)ŵ

]
k∑
l=1

x(l)y∗(l − 1) =
k∑
l=1

y∗(l − 1)yT (l − 1)ŵ

ŵ =

[
k∑
l=1

y∗(l − 1)yT (l − 1)

]−1

·
k∑
l=1

x(l)y∗(l − 1)

ŵ1

ŵ2

 =

 k∑
l=1

 ∣∣V̄ (l − 1)
∣∣2 V̄ ∗(l − 1)x(l − 1)

x∗(l − 1)V̄ (l − 1) |x(l − 1)|2



−1

·
k∑
l=1

x(l)

V ∗(l − 1)

x∗(l − 1)


(D.4)
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