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Abstract We present a novel complex decision-aided maximum-likelihood receiver for joint phase 
noise and frequency offset compensation, with automatic on-line filter weight adaptation using a least-
sum-of-squared-error criterion. Frequency offset is acquired quickly and compensated perfectly for a 
complete frequency offset range of ±1 times the symbol rate. 

Introduction 
A key digital signal processing function in 
coherent systems is to recover the phase and 
frequency of the carrier in the digital domain 
rather than using optical phase-locked loops. 
This enables the use of a free-running local 
oscillator (LO) laser. The frequency offset, Δ𝑓, 
between the transmitter and LO lasers over their 
lifetime can be as large as ±5 GHz1. However, 
the popular block 𝑀th power carrier estimation 
(CE) requires the frequency offset to be kept 
below 10 MHz2. We previously proposed a 
decision-aided, maximum-likelihood (DA ML) 
CE3,4. Unfortunately, DA ML CE has a limited 
frequency offset tolerance, incurring a 1.8 dB 
signal-to-noise ratio (SNR) per bit penalty for an 
increase of Δ𝑓 to 100 MHz at 1.27 MHz laser 
linewidth5. In this paper, we present a new 
complex DA ML CE for joint phase noise and 
frequency offset compensation by extending 
upon the DA ML algorithm to incorporate 
frequency offset estimation (FOE) capability. 

 Compared to the pioneering differential FOE 
technique6, complex DA ML CE avoids the 
nonlinear arctan(∙) operation and the 𝑀th power 
to remove data modulation. Consequently, our 
receiver is not confined to 𝑀-ary phase shift 
keying (MPSK) formats. Furthermore, a 
complete frequency offset compensation range 
of ±𝑅 which does not shrink with higher-order 
modulation formats is achieved. Here, 𝑅 is the 
symbol rate. Our complex DA ML CE attains 
perfect frequency offset compensation without 
any knowledge of the spectral height of the 
additive white Gaussian noise (AWGN), laser 
linewidth or frequency offset. Additionally, no 
phase unwrapping is required and our complex 
DA ML CE is computationally linear.   

Operating principle 
Filtering the received waveform through a 
matched filter and sampling at the right time 
instants yields5 𝑟(𝑘) = 𝑚(𝑘) exp�𝑗�2𝜋∆𝑓𝑇𝑘 +
 𝜃(𝑘)�� + 𝑛(𝑘). Here, 𝑚(𝑘) is the data symbol at 

time 𝑘𝑇 (𝑇 is symbol duration) and {𝑛(𝑘)} is the 
complex AWGN with zero mean and variance 
𝜎𝑛2. SNR per bit is 𝛾𝑏 = E[|𝑚(𝑘)|2] (𝜎𝑛2 log2 𝑀)⁄ , 
where |∙| and E[∙] denote modulus operation and 
statistical expectation, respectively. Laser phase 
noise is modeled as a random walk process 
𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝜂(𝑘). The {𝜂(𝑘)} is a set of 
independent and identically distributed Gaussian 
random variables, each with mean zero and 
variance 𝜎𝑝2 = 2𝜋Δ𝜈𝑇. Here, Δ𝜈 is the combined 
3-dB laser linewidth of transmitter and LO laser.  

In DA ML CE, a reference phasor (RP) of the 
carrier was formed using the immediate past 𝐿 
received signals as 

𝑉(𝑘 + 1) =  𝐶(𝑘)�𝑟(𝑘 − 𝑙 + 1)𝑚�∗(𝑘 − 𝑙 + 1)
𝐿

𝑙=1

 (1) 

where 𝐶−1(𝑘) = ∑ |𝑚�(𝑘 − 𝑙 + 1)|2𝐿
𝑙=1  and 𝑚�(𝑘) is 

the receiver's decision on the 𝑘th symbol. 
Superscript * denotes conjugate. The phase 
noise is assumed to be time invariant at least 
over an interval longer than 𝐿𝑇. In the presence 
of a frequency offset, consecutive modulation-
wiped-off filter input terms {𝑦(𝑘 − 𝑙 + 1) =
𝑟(𝑘 − 𝑙 + 1)𝑚�∗(𝑘 − 𝑙 + 1)}𝑙=1𝐿  will be offset by an 
additional phase rotation of 2𝜋∆𝑓𝑇. To account 
for this constant carrier rotation in our RP 
computation, we suggest multiplying each 
𝑦(𝑘 − 𝑙 + 1) term by 𝑒𝑥𝑝(𝑗2𝜋𝑙∆𝑓𝑇). The filter 
input terms will then be phase-aligned during the 
subsequent vector summation process and thus 
yield a reliable RP for the next time point. We 
hence propose here a new RP 𝑉′(𝑘) formed as 

 𝑉′(𝑘 + 1) =  𝐶(𝑘)𝒘𝑇(𝑘)𝒚(𝑘) (2) 
where 𝒚(𝑘) = [𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝐿 + 1)]𝑇, 𝒘(𝑘) =
[𝑤1(𝑘),⋯ ,𝑤𝐿(𝑘)]𝑇, and superscript 𝑇 denotes 
transpose. The weight 𝑤𝑙(𝑘) is complex and will 
be an estimate of 𝑒𝑥𝑝(𝑗2𝜋𝑙∆𝑓𝑇), functioning to 
rotate the 𝑦(𝑘 − 𝑙 + 1) term. Filter (2) operates 
without the knowledge of SNR, laser phase 
noise, or frequency offset statistics. Since ∆𝑓 is 
unknown, we propose to choose the weight 
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vector 𝒘(𝑘) adaptively at each time 𝑘 based on 
the observations {𝑟(𝑙), 0 ≤ 𝑙 ≤ 𝑘} to minimize the 
cost function 𝐽(𝑘), where 

 
 𝐽

(𝑘) = ��
𝑟(𝑙)
𝑚�(𝑙)

− 𝐶(𝑙 − 1)𝒘𝑇(𝑘)𝒚(𝑙 − 1)�
2

.
𝑘

𝑙=1

 (3) 

The cost function (3) forces 𝑉′(𝑘) to track the 
modulation-wiped-off received signal sample 
given by 𝑟(𝑘) 𝑚�(𝑘)⁄ . Solving 𝜕𝐽(𝑘) 𝜕𝒘∗(𝑘)⁄ = 0 
yields the normal equation 𝒂(𝑘) = 𝑹(𝑘)𝒘(𝑘), 
where 𝒂(𝑘) is an 𝐿-by-1 time-average cross-
correlation vector. To get 𝒘(𝑘), we have to 
invert the 𝐿-by-𝐿 time-average correlation matrix 
𝑹(𝑘) at each time 𝑘. We can obtain both 𝑹−1(𝑘) 
and 𝒘(𝑘) recursively using the matrix inversion 
lemma7 as summarized in Tab. 1, where 
superscript 𝐻 denotes conjugate transpose. The 
inversion of 𝑹(𝑘) is now replaced at each step 
by a simple scalar division. Hence, the need to 
store the entire past observed data is eliminated 
and computational complexity is greatly 
simplified. The RP 𝑉′(0) is initialized to 1 and 
subsequently obtained from (2). Finally, the 
received signal 𝑟(𝑘) is de-rotated by 𝑉′ ∗(𝑘) 
before being fed into the optimum symbol-by-
symbol detector  

 𝑚�(𝑘) = arg  max
0≤𝑖≤M−1

 Re[𝑟(𝑘)𝑉′ ∗(𝑘)𝑚𝑖
∗]  . (4) 

Results and discussion 
A filter block length of 𝐿 = 5 and a single-
polarization signal with a baud rate of 20 Gbaud 
is maintained in all ensuing Monte Carlo 
simulations. An initial preamble of 50 known 

symbols is used to aid in reference acquisition 
and the filter operates in decision-directed mode 
subsequently. Differential encoding is used to 
prevent error propagation due to decision errors. 
Fig. 1(a) plots the adaptation of the angle of the 
complex weights {𝑤𝑙(𝑘)}𝑙=1𝐿 , averaged over 500 
runs at 𝛾𝑏 = 10 dB. A quadrature PSK (QPSK) 
signal at Δ𝜈 = 2 MHz and a frequency offset of 2 
GHz is used. The angle of the weight 𝑤𝑙(𝑘) 
correctly estimates and converges quickly to the 
actual value of 2𝜋𝑙∆𝑓𝑇. Therefore, the complex 
weight 𝑤𝑙(𝑘) indeed rotates 𝑦(𝑘 − 𝑙 + 1) by 
2𝜋𝑙∆𝑓𝑇, ensuring a set of phase-aligned filter 
inputs during the subsequent vector  summation 
process. It should be emphasized that the 
optimum complex weights {𝑤𝑙(𝑘)}𝑙=1𝐿  can 
respond to changing channel conditions, as it 
depends on the observations {𝑟(𝑘)}.  

We empirically evaluate the mean square a 
priori estimation error given by 𝐽′(𝑘) =
𝐸[|𝑟(𝑘) 𝑚�(𝑘)⁄ − 𝑉′(𝑘)|2], which yields a learning 
curve of the complex DA ML algorithm. The 
ensemble-average squared a priori estimation 
error is plotted in Fig. 1(b) for various ∆𝑓 and 
SNR values, using a QPSK signal at Δ𝜈 = 2 
MHz. The algorithm exhibits an exceptionally 
fast rate of convergence, approximately within 

 
 

 
 

Fig. 1: (a) Adaptation process of arg�𝑤𝑙(𝑘)�.      
(b) Ensemble-average squared error curve at 

different values of ∆𝑓 and SNR. 
 

Tab. 1: Recursive weight vector update algorithm 

  Initialize recursive algorithm at time 𝑘 = 0 
1. 𝒘(0) = [11, 02,⋯ , 0𝐿]𝑇 

2. 𝑹−1(0) = 𝛿−1𝑰 ; here 𝛿−1 is a small positive 
constant and  𝑰 is an identity matrix 

  For each time instant 𝑘 ≥ 1  

𝒖(𝑘) = 𝐶(𝑘 − 1)𝑹−1(𝑘 − 1)𝒚∗(𝑘 − 1) 
1. Compute intermediate vector, 𝒖(𝑘) 

𝒈(𝑘) =
𝒖(𝑘)

1 + 𝐶(𝑘 − 1)𝒚𝑇(𝑘 − 1)𝒖(𝑘) 

2. Compute gain vector, 𝒈(𝑘)   

𝜉(𝑘) =
𝑟(𝑘)
𝑚�(𝑘) − 𝐶(𝑘 − 1)𝒘𝑇(𝑘 − 1)𝒚(𝑘 − 1) 

3. Compute a priori estimation error, 𝜉(𝑘) 

𝒘(𝑘) = 𝒘(𝑘 − 1) + 𝒈(𝑘)𝜉(𝑘) 
4. Update weight vector, 𝒘(𝑘) 

𝑹−1(𝑘) = 𝑹−1(𝑘 − 1) − 𝒈(𝑘)𝒖𝐻(𝑘) 
5. Recursively invert correlation matrix 
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twice the filter length for all tested SNR values. 
This means that the weight 𝑤𝑙(𝑘) quickly 
achieves tracking of 𝑒𝑥𝑝(𝑗2𝜋𝑙∆𝑓𝑇) within 2𝐿 
iterations. Note that the mean square error does 
not vary with ∆𝑓, indicating that the complex DA 
ML algorithm is unbiased towards the frequency 
offset present.  

Fig. 2 plots the bit-error rate (BER) curve of 
DA ML and complex DA ML CE for different 
frequency offsets, using a QPSK signal at Δ𝜈 = 
2 MHz. DA ML CE incurs a 0.7- and 1.8-dB SNR 
penalty for an increase of Δ𝑓 to 100 and 200 
MHz, respectively. DA ML CE fails at Δ𝑓 = 2 
GHz. On the contrary, complex DA ML CE’s 
BER performance when ∆𝑓 = 0, 0.1, 0.2, and 2 
GHz is similar to that of the DA ML receiver at 
zero frequency offset. Therefore, the complex 
DA ML CE achieves perfect frequency offset 
compensation at all SNR values. Converse to 
Kalman filter based FOE technique8, complex 
DA ML CE achieves perfect compensation of Δ𝑓 
without statistical knowledge of AWGN, laser 
linewidth or frequency offset.  

Fig. 3 plots the 𝛾𝑏 penalty at BER = 10−4 as 
Δ𝑓 is swept between ±20 GHz for QPSK and 
8PSK signals, using Δ𝜈 of 200 kHz and 2 MHz. 
The reference is the 𝛾𝑏 in a perfect coherent 
receiver. DA ML CE is highly intolerant to 
frequency offsets. For a 2-dB 𝛾𝑏 penalty at Δ𝜈 = 
200 kHz, a frequency offset to symbol rate ratio, 
Δ𝑓𝑇, of 7.5 × 10−3 and 2.5 × 10−3 is realized for 
QPSK and 8PSK signals, respectively. On the 
other hand, a complete frequency offset 
compensation range of Δ𝑓𝑇 = [−1, +1] is 
achieved by our complex DA ML CE. This is 
attributed to the use of a RP  𝑉′(𝑘) having an 
unambiguous phase tracking range of [�0, 2𝜋) �. 
Moreover, the use of a RP eliminates the need 
for phase unwrapping in phase noise and 
frequency offset compensation. There is a 

frequency duplicity of 𝑅 but note that this 
duplicity does not demand differential encoding 
of data for correct detection at the receiver. The 
proposed receiver is modulation format-
independent with an invariant Δ𝑓 compensation 
range as seen from the BER performance 
insensitivity when compensating for Δ𝑓 in QPSK 
and 8PSK formats. It is notable that only a 1-dB 
penalty is incurred at BER = 10−4 for a 20-
Gbaud QPSK signal having a laser linewidth of 
2 MHz, regardless of the frequency offset. 
Degradation of complex DA ML CE’s BER 
performance is only due to laser phase noise. 

Conclusion 
We have presented a novel complex DA ML CE 
(decision-aided maximum-likelihood carrier 
estimation) for joint phase noise and frequency 
offset compensation. Complex DA ML CE has a 
short learning period and is adaptive to 
changing channel conditions. Perfect frequency 
offset compensation for a complete range of ±𝑅 
is achieved for all signal modulation formats, 
where 𝑅 is the symbol rate. No phase 
unwrapping is required. 
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Fig. 2: BER curves of DA ML and complex DA ML 
receivers. 

 

 

 

  Fig. 3: Frequency offset compensation range. 
Inset shows enlarged ∆𝑓𝑇 = [−1.5, +1.5] × 10−2. 

 


