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Abstract—We present a low-complexity carrier estimator with
an effective filter length that automatically adapts according to
the signal-to-noise ratio, laser-linewidth-symbol-duration product,
nonlinear phase noise, and modulation format. Laser-linewidth
and frequency-offset tolerances are studied. The filter length of
a carrier estimator is shown to affect the cycle slip probability
besides the bit-error rate (BER) performance. Considering that
forward-error-correction codes are not robust to burst errors and
phase slips, we demonstrate that filter-length optimization is nec-
essary to avoid spectral-efficiency reduction in pilot assisted sys-
tems and potential system failures in differential encoding sys-
tems. Our estimator achieves a lower cycle slip probability and a
greater nonlinear phase noise tolerance than DiffFE-MPE, DiffFE-
BPS, and complex-weighted decision-aided maximum-likelihood
(CW-DA-ML) estimator. DiffFE-MPE and DiffFE-BPS refer to
the differential frequency estimator (DiffFE) followed by block
M th power phase estimator (MPE) and blind phase search (BPS),
respectively. For a 4100 km quaternary phase-shift keying trans-
mission at a BER of 2.5 X 102, our estimator achieves a cycle slip
probability of 2.9 x 10~7 compared to 5.6 x 107%,5.3 x 107°,
and 3.2 x 10~ for DiffFE-MPE, DiffFE-BPS, and CW-DA-ML,
respectively.

Index Terms—Blind phase search, block M th power, forward
error correction, frequency offset, nonlinear optics, phase noise.

I. INTRODUCTION

ARLY optical networking systems provided point-to-

point wavelength-division multiplexed (WDM) transmis-
sion. The WDM channels propagated over predetermined op-
tical path between fixed transmitter-receiver pairs, with preset
symbol rate and modulation format. These point-to-point sys-
tems then evolved into optical mesh topologies using WDM
and reconfigurable optical add/drop multiplexers, developed to
minimize optical-electrical-optical wavelength regeneration and
grooming costs at intermediate nodes [1]. Later, optical packet
switching (OPS) offering sub-wavelength switching granularity
emerged, driven by the desire for rapidly reconfigurable circuits
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and effective accommodation of bursty traffic [2]. Unlike early
WDM systems, packets can be dynamically routed over differ-
ent optical paths depending on link status (e.g., link availability
and delay), thus experiencing different link impairments. More-
over, with no fixed transmitter-receiver pairs, a given receiver
may receive packets from different transmitters. Currently, elas-
tic optical networks [3] and software defined networks [4] have
been touted as solutions for enhanced spectral efficiency and
optimized network resource utilization. These architectures re-
quire transceivers with tunable modulation format and symbol
rate to support tradeoffs among optical reach, bit rate, and spec-
tral occupancy [5]. A continuous tradeoff between optical reach
and spectral efficiency was demonstrated by time-domain in-
terleaving of different M-ary phase-shift keying (MPSK) and
M -ary quadrature amplitude modulation (MQAM) signals [6],
[7]. Recently, flexible modulation format and bit rate depending
on light-path length was shown to reduce queuing delay in OPS
networks [8].

Considering the above progress towards a fully reconfigurable
optical network, the carrier estimators in intradyne coherent
receivers are expected to receive dynamic data with different
signal-to-noise ratios (SNRs) and nonlinear phase noise due to
variable link impairments, different laser phase noise and fre-
quency offsets due to variable transmitter-receiver laser pairs,
different modulation formats, and different symbol rates. The
popular phase estimators, namely, block Mth power phase es-
timator (MPE) [9] and blind phase search (BPS) [10], utilize
fixed-length transversal filters. Their optimum filter length with
respect to bit-error rate (BER) depends on the parameter set of
SNR, laser-linewidth-symbol-duration product AvT", nonlinear
phase noise, and modulation format [10]-[12]. Difficult numer-
ical optimization and manual adjustment of filter length are
needed for each set of parameters [10]-[12], which may not be
practical in a reconfigurable optical network. Note that the com-
putational complexity of BPS increases with its filter length. The
popular frequency estimator, namely, differential frequency es-
timator (DiffFE) [13] offers a limited frequency-offset-symbol-
duration product A fT" estimation range of £1/2M for MPSK
signals. Furthermore, MPE and DiffFE are not format transpar-
ent. In order to support multiple formats, several format-adapted
MPE modules and format-adapted DiffFE modules are required,
thus increasing the receiver hardware.

Previously, we had derived a decision-aided maximum-
likelihood (DA-ML) phase estimator using a fixed-length filter
in [14]. A first-order recursion technique was proposed in [15] to
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Fig. 1. Optical transmission system employing inline amplifiers. ADC:

analog-to-digital converter, DSP: digital signal processor, Tx: transmitter.

avoid the fixed-length filter of DA-ML. However, the phase es-
timators of [14] and [15], which employ real filter weights, have
a severely limited AfT tolerance in the range of 107 [16].
Hence, by replacing the filter weights of DA-ML with com-
plex weights, a complex-weighted DA-ML (CW-DA-ML) joint
phase and frequency estimator was presented in [17]. Recently,
to avoid the manual filter-length optimization of CW-DA-ML,
we developed an adaptive CW-DA estimator with an adaptive
filter length [18] following the idea in [15].

In this paper, the AvT tolerance, nonlinear phase noise tol-
erance, and cycle slip probability in linear and nonlinear phase
noise scenarios are investigated via simulation for the adaptive
CW-DA estimator. Furthermore, we show that filter-length op-
timization is crucial since it affects the cycle slip probability
besides the BER performance. Performance measures of adap-
tive CW-DA estimator are benchmarked against DiffFE-MPE,
DiffFE-BPS, and CW-DA-ML. DiffFE-MPE and DiffFE-BPS
refer to the operation of DiffFE followed by MPE and BPS,
respectively. In BPS, we set the number of test phases [ to 32
following [10].

The organization of this paper is as follows. In Section II,
adaptive CW-DA estimator is derived and the adaptation of its
effective filter length is explained. In Section III, the AvT tol-
erance, A fT tolerance, and cycle slip probability in the linear
regime are investigated. In Section IV, the nonlinear phase noise
tolerance and cycle slip probability in the nonlinear regime are
studied. In Section V, a complexity analysis of the carrier esti-
mators is performed. Section VI concludes the paper. Through-
out this paper, E-], superscript *, and superscript T, denotes
the expectation operator, complex conjugate, and transpose,
respectively.

II. ADAPTIVE CW-DA ESTIMATOR
A. System Model

Consider the canonical coherent optical transmission system
shown in Fig. 1. At the transmitter, the kth symbol m (k) is up-
converted from electrical to optical signal and transmitted into
an optical channel. The channel employs N,,,,, zero-dispersion
fiber spans of equal length Lj;.,. Fiber loss in each span is
compensated exactly by an inline erbium-doped fiber amplifier
(EDFA) of gain G = exp(aLy;j.,) where « is the attenuation
coefficient. At the output of the ith EDFA, amplified sponta-
neous emission (ASE) noise n; is added to the signal. Noise
n; is zero-mean circularly symmetric complex Gaussian with
spectral density of Sy, = (G — 1)hvn,,, where hv is the pho-
ton energy and n,), is the spontaneous-emission factor. At the

3807

receiver, optical-to-electrical downconversion is performed in
an intradyne coherent receiver by mixing with a local oscilla-
tor (LO) laser followed by balanced photodetection. The kth
received sample arriving at the carrier estimator is modeled as

r(k) = m(k)e?ORT29R) k), k=0,1,2,... (1)
Here, 0(k) represents the phase noise impairment in the received
sample. We have 0(k) = 0 (k) in the linear regime, where
01, (k) is the laser phase noise modeled as a Wiener process.
The laser phase-noise increment 0, (k) — 01, (k — 1) has mean
zero and variance ag = 27 AvT, where Av is the combined
laser linewidth of the transmitter and LO lasers. The angular fre-
quency offset between the transmitter and LO lasers is denoted
as Aw = 27 A fT.1In (1), n(k) represents the accumulated ASE
noise with mean zero and variance Ny = Ny, Ssp Bo, where
By is a filter bandwidth matched to the signal. The SNR per bit
is defined as v, = E|[|m(k)|*]/Ny log, M. In order to be robust
against cycle slips in the carrier estimator, differential encoding
of data is assumed.

B. Adaptive CW-DA Algorithm

In CW-DA-ML [17], the carrier at time k + 1 is estimated by
a complex phasor V' (k 4 1). The sample r(k + 1) is corrected
by derotating it as 7(k + 1)V*(k + 1). The phasor V' (k + 1) is
formed using a transversal filter of length L as

k
Vk+1)=Ck) > waakr@m () (@)

I=k—-L+1

where C~1(k) = S21_, ;. [/m(])? is a normalizing factor,
w; (k) is the ith complex filter weight, and /(1) is the symbol de-
cision on 7(1)V*(1) made using a minimum Euclidean-distance
metric.

To avoid specifying a filter length L, we propose to replace
(2) with a new complex phasor V (k + 1) formed by a first-order
recursion as

V(k+1)=w V(k)+ wox(k) 3)

where w; is the new ith complex filter weight and x(k) is the
normalized filter input r(k)/m(k). If (k) = m(k), z(k) ap-
proximates the carrier at time k. Using z(k) as the desired
response, we define the estimation error as the difference be-
tween (k) and V (k). The filter weights in (3) are recomputed
automatically at each time k£ > 1 so as to minimize the sum-of-
error-squares cost function J(k), where

k
J(k) =" 2y = V). )
=1

In(4), V(1) is expressed in terms of (3). Attime k = 0, we initial-
ize V(0) = 1,w; = 0, and wy = 1. Solving 0J(k)/0w* = 0,
where w = [w; wy]?, yields the least-squares optimum  at
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(b) 4, = 12dB with AvT = 1074, and (c) 7, = 4 dB with AvT = 107%.
Here, A fT = 0.1.

time k as
w=®'z (3)
L V(-1 Vel —1)z(—1)
2=2 Ls*(l— Da-1  ee-ne | ©
“ Vel —1)
z=) x(l)-| | (7)
= [m (-1 }

where @ is a 2-by-2 matrix and z is a 2-by-1 vector. The structure
of adaptive CW-DA estimator is shown in Fig. 2.

C. Adaptation of Effective Filter Length

The steady-state filter weights, averaged over 500 runs, of
adaptive CW-DA estimator for quaternary PSK (QPSK) signals
are plotted in Fig. 3. Magnitude of V(1) must approximate 1 to
minimize the sum of error squares in (4) since the magnitude of
x(1) is ~1. For this condition to be satisfied, the magnitude sum
of the filter weights must equal 1 by virtue of (3). Indeed, |w; | +
|y | always equal to ~1 in Fig. 3. Given the recursive nature of
(3) and the sum |w; | + |w2| = 1, the filter input samples {z(()}
will be summed in a decaying manner by (3). Thus, |@1] is
a measure of the effective filter length of our recursive filter.
The effective filter length represented by |w; | decreases from
Fig. 3(a) to Fig. 3(b) and increases from Fig. 3(b) to Fig. 3(c)
corresponding to the increase in Av7T and decrease in SNR,
respectively.
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Fig. 4. BER performance. Here, A fT" = 0.1.

The phasor V(1) must have an angular frequency offset ap-
proximating Awl to minimize (4) since angular frequency offset
of (1) is ~Awl. For this condition to be satisfied, the phase of
w; and w9 should be ~Aw by virtue of (3). Indeed, the phase
of w; and w, always converge to the actual Aw value of 0.27
rad in Fig. 3 regardless of SNR and AvT.

Fig. 4 shows the BER performance of CW-DA-ML for QPSK
and 16-QAM signals. The value (LT)~! is a measure of an
estimator’s bandwidth. The optimum value of L found by an
exhaustive search is larger at low SNR and smaller at high
SNR. Narrower bandwidth is beneficial at lower SNR to filter
the dominant ASE noise and wider bandwidth is beneficial at
higher SNR to track the dominant laser phase noise. On the flip
side, adaptive CW-DA estimator always minimizes the BER by
automatically adapting its effective filter length according to the
SNR, AvT, and modulation format. Performance loss of actual,
compared to ideal, decision feedback is minimal for the tested
SNR range.

III. PERFORMANCE IN LINEAR PHASE NOISE

Fig. 5 compares the laser linewidth and frequency offset tol-
erance of carrier estimators at a BER of 103 for QPSK signals.
The v, penalty is referenced to that of ideal coherent detec-
tion. The filter length L in MPE, BPS, and CW-DA-ML is set
to 15, 19, and 15, respectively, which are numerically opti-
mized for a 1-dB +, penalty at BER of 1072 [17]. For a 1-dB
penalty, adaptive CW-DA estimator accommodates a AvT of
1.8 x 10~* which is comparable to that of MPE and CW-DA-
ML, but slightly smaller than the 4.1 x 10~* AvT tolerance of
BPS. As for the AfT estimation range, DiffFE is limited to
+1/8 due to the raising of samples to the 4th power for modu-
lation removal. However, adaptive CW-DA estimator attains a
complete AfT estimation range of +1/2, as the phasor V (k)
has an unambiguous phase tracking range of [0, 27).

For an error-free optical communication, the optical reach
without regeneration is limited by SNR. Forward error cor-
rection (FEC) is now widely adopted as a standard tech-
nique for increasing the optical reach or lowering the SNR
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requirement [19]. In general, FEC codes are not designed for
burst errors and correlated errors, which if encountered can
tighten the BER threshold of the code [20].

Cycle slips are inherent in MPE, BPS, CW-DA-ML, and adap-
tive CW-DA estimator. Pilot symbols can be used to mitigate
cycle slips, but errors due to cycle slips will persist until the
next pilot symbols arrive resulting in burst errors. For success-
ful FEC decoding, pilot symbols need to be inserted at a much
higher frequency than the cycle slip probability to minimize
the burst error length. Therefore, a low cycle slip probability is
preferred to minimize the pilot overhead. The cycle slip proba-
bility is plotted in Fig. 6 using QPSK signals at v, = 7.82 dB.
Cycle slip probability is seen to be filter-length dependent in
DiffFE-MPE, DiffFE-BPS, and CW-DA-ML. Effective tracking
of laser phase noise using shorter filter lengths at broader laser
linewidths and sufficient averaging of ASE noise at narrower
laser linewidths using longer filter lengths improves the phase
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2.5 x 1072, Here, AvT = 3 x 107*.

estimate. Improved phase estimate reduces the cycle slip prob-
ability by reducing phase unwrapping errors in MPE and BPS,
and by reducing the symbol decision errors in CW-DA-ML.
Inappropriate selection of filter length can be detrimental. For
example, insufficient filter length causes a cycle slip probability
floor at smaller values of AvT. Our adaptive CW-DA estima-
tor tolerates a larger or equal AvT compared to DiffFE-MPE,
DiffFE-BPS, and CW-DA-ML for a given cycle slip probability.

Next, we demonstrate the criticality of filter-length optimiza-
tion in a differentially encoded system employing soft decision
(SD) FEC. Instead of pilot symbols, differential encoding can
be used to confine the catastrophic errors of a cycle slip to the
slip duration. SD FEC provides enhanced net coding gain but its
benefits are impaired by the error duplication penalty in differ-
entially encoded systems [21]. The differential encoding penalty
was shown to be completely eliminated by turbo differential de-
coding (TDD), i.e., turbo decoding of an outer SD low density
parity check decoder and an inner soft differential decoder [21],
[22]. However, TDD is vulnerable to a quickly rising post-FEC
error floor in the presence of frequent cycle slips [22].

Fig. 7 plots the required SNR for QPSK signals with a target
BER of 2.5 x 1072 and the corresponding cycle slip probability
as a function of the filter length. The cycle slip probability is
more sensitive than the required SNR to variations in the filter
length. For example, DiffFE-BPS attains a 0.58-dB improve-
ment in the required SNR with filter-length optimization but
achieves a 94 times reduction in cycle slip probability. Mis-
adjustment of filter length L in DiffFE-MPE by 4 taps from
17 to 13 causes the cycle slip probability to rise above 107*,
which would cause the TDD post-FEC BER to saturate above
107 [22]. Such misadjustments can render the carrier estima-
tor unusable as high data integrity with BER lower than 1077,
preferably 10712, is generally expected in optical transport sys-
tems. On the other hand, adaptive CW-DA estimator assures
the lowest cycle slip probability at 1.8 x 10> and a TDD post-
FEC BER of much lower than 10~ Simultaneously, our new
estimator achieves a comparable SNR requirement to that of
DiffFE-MPE and CW-DA-ML, and is a mere 0.2 dB inferior to
DiffFE-BPS with optimum filter length.
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IV. PERFORMANCE IN NONLINEAR PHASE NOISE

We consider the presence of fiber Kerr nonlinearity in the
optical transmission system illustrated in Fig. 1. Interaction
of signal and ASE noise with the Kerr effect generates self-
phase-modulation induced nonlinear phase noise [23]. The ac-
cumulated nonlinear phase noise experienced by the signal after
Nypan EDFAs is given by [24]

span

Ony (k) = 7(1 - exp(—OéLf“,w)) | Z

«

m(k) + Zn (k;)‘
Tw®

where « is the nonlinear coefficient of the fiber. The received
sample in (1) is now corrupted by a total phase noise of 0(k) =
01, (k) + Oxy (k). Nonlinear phase noise impairs the perfor-
mance of phase-modulated optical systems [25].

Fig. 8 analyzes the nonlinear phase noise tolerance of car-
rier estimators in a 28-Gbaud QPSK signal transmission over
Ngpan =41 spans. A nominal combined laser linewidth of
200 kHz is used and the following system parameters are as-
sumed: v = 1.2 W km™*, Ly, = 100 km, o = 0.2 dB/km,
G = 20 dB, optical wavelength A = 1550 nm, n,, = 1.41, and
By =28 GHz. The optimum filter length for DiffFE-MPE,
DiffFE-BPS, and CW-DA-ML was found to be 21, 27, and 21,
respectively, through an exhaustive search. In contrast, our new
estimator automatically adapts its effective filter length accord-
ing to the nonlinear phase noise to achieve the lower BER. The
minimum BER occurs at approximately 0 dBm launch power
corresponding to a mean nonlinear phase shift of 1.07 rad [24],
which agrees well with the finding of [23]. As the launch power
exceeds the optimum power, variance of the total phase noise
increases and the BER deteriorates. Adaptive CW-DA estimator
approximately halves the minimum achievable BER compared
to DiffFE-MPE.

In order to understand the effect of nonlinear phase noise
on cycle slip probability, we kept the SNR per bit constant at
4.47 dB in Fig. 8 and varied the launch power. The resulting
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TABLE I
COORDINATES OF POINTS AT BER OF 2.5 x 10~2 IN FIG. 9
Carrier estimator Launch power (dBm) Cycle slip probability
DiffFE-MPE, L = 11 —10.0 1.0 x 107*
DiffFE-MPE, L = 21 —-94 5.6 X 107°
DiffFE-BPS, L = 27 —5.4 5.3 %107
CW-DA-ML, L =21 —-5.8 3.2x1077
Adaptive CW-DA -5.2 2.9x1077

cycle slip probability is plotted in Fig. 9. The value of n,, was
varied to keep the SNR constant. The nonlinear phase shift in-
creases with the launch power, thereby increasing the cycle slip
probability. A cycle slip probability floor appears for DiffFE-
MPE and DiffFE-BPS employing fixed-length filters, similar to
the linear phase noise case in Fig. 6. Points yielding a BER
of 2.5 x 1072 with differential encoding are marked in Fig. 9
and tabulated in Table I. The importance of filter-length adjust-
ment is illustrated by DiffFE-MPE using L = 11 and L = 21.
Filter-length adjustment from 11 to 21 yields a minimal 0.6-dB
improvement in launch power tolerance at a BER of 2.5 x 1072,
but successfully avoids a TDD post-FEC error floor of 10~ by
reducing the cycle slip probability from 10~* to 5.6 x 1076,
From Table I, we observe that the adaptive CW-DA estimator
achieves greater nonlinear phase noise tolerance and lower cycle
slip probability than the other estimators.

V. COMPLEXITY ANALYSIS

Carrier estimators should have a low computational complex-
ity in order to be feasible for practical implementation with data
rates of 100 Gb/s and beyond. Thanks to adaptive CW-DA es-
timator’s two-tap filter structure, the computational complexity
is greatly simplified. We compute and store only the upper tri-
angle of the matrix @ in (6) while the lower triangle is obtained
by diagonal reflection, as @ is Hermitian. Summations in (6)
and (7) can be computed recursively. Furthermore, the matrix
inversion in (5) is trivial as @ is a 2-by-2 matrix.

Table II analyzes the computational complexity of carrier
estimators for QPSK signals. Each complex multiplication is
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TABLE II
COMPLEXITY ANALYSIS
Estimator Comp.lexny ‘Re.:al . Real additions Interr'nc.adlate Comparisons Table Phase Buffer units
to estimate multiplications decisions look-ups unwrap
12(N—1)+1 | 6(N—1)+2N -2 0 0 1 0 0
DiffFE Aw over N ( ) ( )
symbols 119989 79992 0 0 1 0 0
8+1/L 6—2/L 0 0 1/L 1/L 0
MPE 0 (k) per / / / /
symbol 8.07 5.87 0 0 0.07 0.07 0
BPS 0 (k) per 68 (L+4p B B 0 1 LB
symbol 192 736 32 32 0 1 608
617 + 14L + 10 61> +8L+6 0 0 0 0 L2+ 6L+4
CW-DA-ML V() per
symbol 1570 1476 0 0 0 0 319
Adaptive CW-DA | V(K per 43 34 0 0 0 0 12
symbol

calculated as four real multiplications and two real additions.
Each arctan(-) operation is expressed as a table lookup. Com-
plexity of DiffFE is presented separately, as DiffFE estimates the
frequency over a block of NV symbols whereas adaptive CW-DA
estimator estimates the phase and frequency on a symbol-by-
symbol basis.

Our new estimator does not require any intermediate de-
cisions, comparisons, table look-ups, or phase unwrapping.
Adaptive CW-DA estimator has a fixed complexity, unlike
MPE and BPS whose complexity varies with L and /3. Rep-
resentative numbers are also given in Table II by substituting
practical values for DiffFE (N = 10*), MPE (L = 15), BPS
(L =19,5 =32), and CW-DA-ML (L = 15) [10], [17]. Our
new estimator reduces the multiplications, additions, and buffer
units by a factor of 36.5, 43.4, and 26.6, respectively, compared
to CW-DA-ML. Although BPS only estimates the phase, it still
needs 4.5, 21.6, and 50.7 times more multiplications, additions,
and buffer units, respectively, compared to our new estimator.

Further reduction of our estimator’s complexity can be
achieved in an application specific integrated circuit (ASIC)
implementation, for example, by using the coordinate rotation
digital computing technique [26]. We remark that the required
digital resolution of the ASIC, in terms of number of bits, to
minimize the signal quantization penalty will also affect the
implementation complexity.

VI. CONCLUSION

A judicial choice of filter length is crucial in carrier estimators
using fixed-length filters such as MPE, BPS, and CW-DA-ML,
regardless of their deployment in a pilot assisted or a differen-
tially encoded system. Although the degradation in the required
SNR or nonlinear phase noise tolerance is minimal when the
filter length is not optimized, the resulting degradation in cycle
slip probability can cause system failures.

We presented a low-complexity adaptive CW-DA estimator
which automatically adapts its effective filter length accord-
ing to the SNR, laser-linewidth-symbol-duration product AvT,
nonlinear phase noise, and modulation format. The adaptive
CW-DA estimator has similar AvT" tolerance as MPE and CW-
DA-ML, but slightly smaller compared to BPS. However, the

SNR per bit penalty compared to BPS is a mere 0.25 dB at
AvT = 4.1 x 10, Our new estimator achieves a lower or
equal cycle slip probability compared to DiffFE-MPE, DiffFE-
BPS, and CW-DA-ML, in linear and nonlinear phase noise sys-
tems. Additionally, a larger nonlinear phase noise tolerance than
the other estimators and a complete frequency estimation range
is achieved. To further endear adaptive CW-DA estimator to
reconfigurable optical networks, the estimator should be paral-
lelized, which is a subject of future work.
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